Lesson 1 PDF
Document Details

Uploaded by AmiableCarnelian1993
Tags
Summary
This document provides an introduction to sets, which are fundamental concepts in modern mathematics. It discusses the concept of sets, their representations, and basic operations, such as the union and intersection of sets. The document is designed for a secondary school level.
Full Transcript
vè;k; 1 leqPp; (Sets) vIn these days of conflict between ancient and modern studies; there must purely be something to be said for a study which did not begin with Pythagoras and will not end with Einstein; but...
vè;k; 1 leqPp; (Sets) vIn these days of conflict between ancient and modern studies; there must purely be something to be said for a study which did not begin with Pythagoras and will not end with Einstein; but is the oldest and the youngest — G.H.HARDY v 1.1 Hkwfedk (Introduction) orZeku le; esa xf.kr osQ vè;;u esa leqPp; dh ifjdYiuk vk/kjHkwr gSA vktdy bl ifjdYiuk dk iz;ksx xf.kr dh izk;% lHkh 'kk[kkvksa esa gksrk gSA leqPp; dk iz;ksx lac/ a ,oa iQyu dks ifjHkkf"kr djus osQ fy, fd;k tkrk gSA T;kferh;] vuqØe] izkf;drk vkfn osQ vè;;u esa leqPp; osQ Kku dh vko';drk iM+rh gSA leqPp; fl¼kar dk fodkl teZu xf.krK Georg Cantor (1845&1918) }kjk fd;k x;k FkkA f=kdks.kferh; Js.kh osQ iz'uksa dks ljy djrs le; mudk leqPp; ls igyh ckj ifjp; gqvk FkkA bl vè;k; esa ge leqPp; ls lacaf/r oqQN ewyHkwr ifjHkk"kkvksa vkSj Georg Cantor lafØ;kvksa ij fopkj djsaxsA (1845-1918 A.D.) 1.2 leqPp; vkSj mudk fu:i.k (Sets and their Representations) nSfud thou esa ge cgq/k oLrqvksa osQ laxzg dh ppkZ djrs gSa] tSls rk'k dh xM~Mh] O;fDr;ksa dh HkhM+] fØosQV Vhe vkfnA xf.kr esa Hkh ge fofHkUu laxzgksa] dh ppkZ djrs gSa] mnkgj.kkFkZ] izko`Qr la[;kvksa dk laxzg fcanqvksa dk laxzg] vHkkT; la[;kvksa dk laxzg vkfnA fo'ks"kr%] ge fuEufyf[kr laxzg ij fopkj djsaxs% (i) 10 ls de fo"ke izko`Qr la[;k,¡] vFkkZr~ 1] 3] 5] 7] 9 (ii) Hkkjr dh ufn;k¡] (iii) vaxzs”kh o.kZekyk osQ Loj] ;kuh] a, e, i, o, u, (iv) fofHkUu izdkj osQ f=kHkqt] 2024-25 2 xf.kr (v) la[;k 210 osQ vHkkT; xq.ku[kaM] vFkkZr~] 2] 3] 5 rFkk 7] (vi) lehdj.k x2 – 5x + 6 = 0, osQ ewy vFkkZr~] 2 rFkk 3 ;gk¡ ge ;g ns[krs gSa fd mi;qZDr izR;sd mnkgj.kksa esa ls oLrqvksa dk ,d lqifjHkkf"kr laxzg bl vFkZ esa gS fd fdlh oLrq osQ laca/ esa ge ;g fu.kZ; fuf'pr :i ls ys ldrs gSa fd og oLrq ,d iznÙk laxzg esa gS vFkok ugha gSA mnkgj.kr% ge ;g fuf'pr :i ls dg ldrs gSa fd ^uhy unh*] Hkkjr dh ufn;ksa osQ laxzg esa ugha gSA blosQ foijhr xaxk unh bl laxzg esa fuf'pr:i ls gSA ge uhps ,sls leqPp; osQ dqN vkSj mnkgj.k ns jgs gSa] ftudk iz;ksx xf.kr esa fo'ks"k:i ls fd;k tkrk gS_ N : izko`Qr la[;kvksa dk leqPp; Z : iw.kk±dksa dk leqPp; Q : ifjes; la[;kvksa dk leqPp; R : okLrfod la[;kvksa dk leqPp; Z+ : /u iw.kk±dksa dk leqPp; Q + : /u ifjes; la[;kvksa dk leqPp; R + : /u okLrfod la[;kvksa dk leqPp; bu fo'ks"k leqPp;ksa osQ fy, fu/kZfjr mi;qZDr izrhdksa dk iz;ksx ge bl iqLrd esa fujarj djrs jgsaxsA blosQ vfrfjDr fo'o osQ ik¡p lokZf/d fo[;kr xf.krKksa dk laxzg ,d lqifjHkkf"kr leqPp; ugha gS] D;ksafd lokZf/d fo[;kr xf.krKksa osQ fu.kZ; djus dk ekinaM ,d O;fDr ls nwljs O;fDr osQ fy, fHkUu&fHkUu gks ldrk gSA vr% ;g ,d lqifjHkkf"kr laxzg ugha gSA vr% ^oLrqvksa osQ lqifjHkkf"kr laxzg* dks ge ,d leqPp; dgrs gSaA ;gk¡ ij gesa fuEufyf[kr fcanqvksa ij è;ku nsuk gS% (i) leqP;; osQ fy, oLrq,¡] vo;o rFkk lnL; i;kZ;okph in gSaA (ii) leq P ;; dks iz k ;% va x z s ” kh o.kZ e kyk os Q cM+ s v{kjks a ls fu:fir djrs gS a ] tSls A, B, C, X, Y, Z vkfn (iii) leqPp; osQ vo;oksa dks vaxzs”kh o.kZekyk osQ NksVs v{kjksa }kjk iznf'kZr djrs gSa] tSls a, b, c, x, y, z vkfn ;fn a, leqPp; A dk ,d vo;o gS] rks ge dgrs gaS fd ^a leqPp; A esa gS*A okD;ka'k ^vo;o gS* ^lnL; gS* ;k ^esa gS* dks lwfpr djus osQ fy, ;wukuh izrhd ^^∈ (epsilon)** dk iz;ksx fd;k tkrk gSA vr% ge ‘a ∈ A’ fy[krs gSaA ;fn b, leqPp; A dk vo;o ugha gS] rks ge ‘b ∉ A’ fy[krs gSa vkSj bls ^^b leqPp; A esa ugha gS** iys dks"Bd osQ Hkhrj fy[krs gSaA mnkgj.kkFkZ] 7 ls de lHkh le /u iw.kk±dksa osQ leqPp; dk o.kZu jksLVj :i esa {2, 4, 6} }kjk fd;k tkrk gSA fdlh leqPp; dks jksLVj :i esa iznf'kZr djus osQ dqN vkSj mnkgj.k uhps fn, gSa% (a) la [ ;k 42 dks foHkkftr djus okyh lHkh iz k o` Q r la [ ;kvks a dk leq P p; {1, 2, 3, 6, 7, 14, 21, 42} gSA (b) vaxzs”kh o.kZekyk osQ lHkh Lojksa dk leqPp; {a, e, i, o, u} gSA (c) fo"ke izko`Qr la[;kvksa dk leqPp; {1, 3, 5,...} gSA var osQ fcanq] ftudh la[;k rhu gksrh gS] ;g crykrs gSa fd bu fo"ke la[;kvksa dh lwph varghu gSA uksV dhft, fd jksLVj :i esa vo;oksa dks lwphc¼ djus esa muosQ Øe dk egRo ugha gksrk gSA bl izdkj mi;ZqDr leqPp; dks {1, 3, 7, 21, 2, 6, 14, 42}izdkj Hkh iznf'kZr dj ldrs gSaA AfVIi.kh ;g è;ku j[kuk pkfg, fd leqPp; dks jksLVj :i esa fy[krs le; fdlh vo;o dks lkekU;r% nksckjk ugha fy[krs gSa] vFkkZr~] izR;sd vo;o nwljs ls fHkUu gksrk gSA mnkgj.k osQ fy, 'kCn ‘SCHOOL’ esa iz;qDr v{kjksa dk leqPp; { S, C, H, O, L} gSA (ii) leqPp; fuekZ.k :i esa] fdlh leqPp; osQ lHkh vo;oksa esa ,d loZfu"B xq.k/eZ gksrk gS tks leqPp; ls ckgj osQ fdlh vo;o esa ugha gksrk gSA mnkgj.kkZFk leqPp; {a, e, i, o, u} osQ lHkh vo;oksa esa ,d loZfu"B xq.k/eZ gS fd buesa ls izR;sd vo;o vaxzs”kh o.kZekyk dk ,d Loj gS vkSj bl xq.k/eZ okyk dksbZ vU; v{kj ugha gSA bl leqPp; dks V ls fu:fir djrs gq, ge fy[krs gSa fd] V = {x : x vaxzs”kh o.kZekyk dk ,d Loj gS}A ;gk¡ è;ku nsuk pkfg, fd fdlh leqPp; osQ vo;oksa dk o.kZu djus osQ fy, ge izrhd ‘x’ dk iz;ksx djrs gS]a (x osQ LFkku ij fdlh vU; izrhd dk Hkh iz;ksx fd;k tk ldrk gS] tSl]s v{kj y, z vkfnA) ftlosQ mijkar dksyu dk fpÉ ¶%¸ fy[krs gSAa dksyu osQ fpÉ osQ ckn leqPp; osQ vo;oksa osQ fof'k"V xq.k/eZ dks fy[krs gSa vkSj fiQj lai.w kZ dFku dks e>ys dks"Bd { } osQ Hkhrj fy[krs gSaA leqPp; V osQ mi;qDZ r o.kZu dks fuEufyf[kr izdkj ls i