Lecture Notes – Week 4 PDF

Summary

These lecture notes cover the concept of limits in calculus. They introduce average and instant velocity, provide definitions and examples, and demonstrate techniques for computing various limits. The notes also cover one-sided limits and theorems relevant for computing limits.

Full Transcript

## Limit First, we will talk about the motivation of doing limit, it has many applications itself, but it is also used in derivatives and integrals. ### Average and Instant Velocity We talked about the position function of an object thrown vertically. If a rock is launched vertically upward wit...

## Limit First, we will talk about the motivation of doing limit, it has many applications itself, but it is also used in derivatives and integrals. ### Average and Instant Velocity We talked about the position function of an object thrown vertically. If a rock is launched vertically upward with a speed of 96 m/s, the position of this rock after *t* seconds is given by *h(t) = -16t^2 + 96t*. Recall that *h(0) = 50 m*, and we can find the maximum height by *h’(t) = h(3)*, which is 144 m. So, the rock in 3s goes to 144m and then it comes down. Now, let’s find the average speed of this rock for different intervals: * (a) *t₁ = 1s* and *t₂= 2s* * (b) *t₁ = 1s* and *t₃ = 3s* In general, the average speed of an object with the position function *s(t)* is obtained by *V<sub>av</sub> = (s(t₂) - s(t₁)) / (t₂ - t₁)* Which is the slope of the line between the position of the object at *t = t₁* and the one at *t = t₂*. * (a) V<sub>av</sub> = (h(t₂) - h(t₁)) / (t₂ - t₁) = (128 - 80) / (2 - 1) = 48 m/s * (b) V<sub>av</sub> = (h(t₃) - h(t₁)) / (t₃ - t₁) = (144 - 80) / (3 - 1) = 32 m/s Let’s look at these value in the graph of *h(t)*. (A line joining two points on a curve is called a secant line) As we expected the slope of the line from 1 to 2 is more than the slope of the line from 1 to 3. The question is that how can we find the instant velocity of the rock at any given time, say *t = 1*? To find the instant speed, we choose times closer and closer to *t = 1*. If we calculate the average speed for those, we’ll see that they are getting closer and closer to a value, in this case, 64 m/s. | Time Interval | Average Velocity | |:---|:---| |[1, 2] | 48| |[1, 1.5] | 56 | |[1, 1.1] | 62.4 | |[1, 1.01] | 63.84 | |[1, 1.001] | 63.984| |[1, 1.0001] | 63.9984 | In fact, we find the limit of average speed, when the time approaches *t = 1*: *v(1) = lim (h(t) - h(1)) / (t - 1) = lim (-16t^2 + 96t -80) / (t - 1) = 64 m/s.* We will study the method to find this limit later. ### Definitions **Definition:** Suppose the function *f* is defined for all *x* near *a*, except possibly at *a*. If *f(x)* is arbitrary close to *L* for all *x* sufficiently close to *a* (but not equal), we write *lim*<sub>*x → a*</sub> *f(x)* = *L* and say the *limit of f(x) as x approaches a is L*. **Example:** We use the graph of *f* to determine the following values. * Find *f(1)*, *f(2)*, and *f(3)*. * lim*<sub>*x→1*</sub> *f(x)* = ? As you see from the graph, *x* approaches 1, the values for *f(x)* are getting closer and closer to 1.50 *lim*<sub>*x→1*</sub> *f(x)* = 1 *lim*<sub>*x→2*</sub> *f(x)* = ? As you see, the values of *f(x)* in this case are getting to 2, even *f(2)* is not 2! So, *lim*<sub>*x→2*</sub> *f(x)* = 2 *lim*<sub>*x→3*</sub> *f(x)* = ? *f* is not defined at *x = 3*, but still the limit exists, by the same argument: *lim*<sub>*x→3*</sub> *f(x)* = 3. **Example:** Let’s use a table now. We create a table of values of *f(x) = √x-1 / x-1* for the values near 1. We will use it to find *lim*<sub>*x→1*</sub> *f(x)*. | x | f(x) = √x-1/x-1 | |:---:|:---| | 0.9 | 0.5131670 | | 0.99 | 0.5012563 | | 0.999 | 0.5001251 | | 0.9999 | 0.5000125 | | 1.0001 | 0.4999875| | 1.001 | 0.4998750 | | 1.01 | 0.4987562| | 1.1 | 0.4880885 | As you see in the table, when *x* approaches to 1, *f(x)* is getting closer and closer to 0.5, so *lim*<sub>*x→1*</sub> *f(x)* = 0.5 (= 1/2) In this table, we can see values of *f(x)* when *x* approaches to 1 from higher/lower values. In this example both are getting to 0.5. Also, note that *x = 1* is not in the domain of *f*, but we have the *lim*<sub>*x→1*</sub>*f*. ### One-Sided Limits **Definition:** Suppose *f* is defined for all *x* near *a* with *x > a*. If *f(x)* is arbitrary close to *L* for all *x* sufficiently close to *a* with *x > a*, we write *lim*<sub>*x→a+*</sub> *f(x)* = *L* and say the *limit of f(x) as x approaches a from the right equals L*. *lim*<sub>*x→a-*</sub> *f(x)* = *L* and say the *limit of f(x) as x approaches a from the left equals L*. **Example:** Let *f(x) = x^2 - 8 / 4x-2*. We want to find *lim*<sub>*x→2+*</sub> *f(x)*, *lim*<sub>*x→2-*</sub> *f(x)*, and *lim*<sub>*x→2*</sub> *f(x)* if they exist. The graph of *f* is given, note that *2 ∉ D<sub>f</sub>* It’s clear (from its graph) that if *x* approaches 2 from right, *f(x)* is getting to 3, same for approaching from left, and finally when *x > 2*, then *f(x) → 3*. So, *lim*<sub>*x→2+*</sub> *f(x)* = 3 *lim*<sub>*x→2-*</sub> *f(x)* = 3 *lim*<sub>*x→2*</sub> *f(x)* = 3 We can also find these limits from the value table of *f*. | x | f(x) = (x^2 - 8) / (4x - 2) | |:---|:---| | 1.9 | 2.8525 | | 1.99 | 2.985025 | | 1.999 | 2.99850025 | | 1.9999 | 2.99985000 | | 2.0001 | 3.00015000 | | 2.001 | 3.00150025 | | 2.01 | 3.015025 | | 2.1 | 3.1525 | As you see in this example the right and left limits exist and they are equal, and the *lim*<sub>*x→2*</sub> *f(x)* also exists and equals them. ### Theorem **Theorem:** Assume *f* is defined for all *x* near *a*, except possibly at *a*. Then *lim*<sub>*x→a*</sub> *f(x)* = *L* if and only if *lim*<sub>*x→a+*</sub> *f(x)* = *L* and *lim*<sub>*x→a-*</sub> *f(x)* = *L* **Example:** Given the graph of *g*, find the following limits, if they exist. * lim*<sub>*x→2-*</sub> *g(x)* = 4 (*x < 2*) * lim*<sub>*x→2+*</sub> *g(x)* = 2 (*x > 2*) So, *lim*<sub>*x→2*</sub> *g(x)* does not exist. **Example:** Consider the function *f(x) = cos(1/x)*. For any point *a*, except 0, the *lim*<sub>*x→a*</sub> *f(x)* exists but for *a = 0*, as you see from its graph, the right limit does not exist, because the graph is alternatively changes between -1 and 1 and does not approach to one value, so *lim*<sub>*x→0+*</sub> *cos(1/x)* does not exist, so *lim*<sub>*x→0*</sub> *cos(1/x)* does not exist (same for *lim*<sub>*x→0-*</sub> *f(x)*). We have the same argument for *g(x) = sin(1/x)*. ### Techniques for Computing Limits 1. **Let’s start with a constant function. If *f* is a constant function, *f(x) = b*, for some *b ∈ R*, then it’s clear that *lim*<sub>*x→a*</sub> *f(x)* = *lim*<sub>*x→a*</sub> *b* = *b*. 2. **For a linear function *y = mx + b*.** As an example, we want to find *lim*<sub>*x→1*</sub> *(x + 1)*, as you can see, approaching *x* to 1, *f(x)* is getting to 2, so *lim*<sub>*x→1*</sub> *f(x)* = 2. But what is 2? Isn’t it *f(1)*? This is the case for any value of *a*, for any linear function. *lim*<sub>*x→a*</sub> *f(x)* = *lim*<sub>*x→a*</sub> *(mx + b)* = *ma + b* = *f(a).* Before continue to other functions, let’s have the rules for limit. **Theorem:** Assume *lim*<sub>*x→a*</sub>*f(x)* and *lim*<sub>*x→a*</sub>*g(x)* exist. For any real number *c*, and positive integers *m* and *n*, we have * (i) *lim*<sub>*x→a*</sub> *(f(x) + g(x))* = *lim*<sub>*x→a*</sub> *f(x)* + *lim*<sub>*x→a*</sub> *g(x)* * (ii) *lim*<sub>*x→a*</sub> *(c * f(x))* = *c* *lim*<sub>*x→a*</sub> *f(x)* * (iii) *lim*<sub>*x→a*</sub> *(f(x) - g(x))* = *lim*<sub>*x→a*</sub> *f(x)* - *lim*<sub>*x→a*</sub> *g(x)* * (iv) *lim*<sub>*x→a*</sub> *(f(x) / g(x))* = *lim*<sub>*x→a*</sub>*f(x)* / *lim*<sub>*x→a*</sub> *g(x)* (*lim*<sub>*x→a*</sub> *g(x) ≠ 0*) * (v) *lim*<sub>*x→a*</sub> *(f(x))^n* = (*lim*<sub>*x→a*</sub> *f(x)*)^n* * (vi) *lim*<sub>*x→a*</sub> *(f(x))^m/n* = (*lim*<sub>*x→a*</sub> *f(x)*)^m/n* (*n ≠ 0* if *n* is even) Note that (i), and (iii) hold for any number of functions. Also, note that in all of them *x ≠ a*. Lastly, all these laws are valid for one-sided limits. 3. **Let’s have an example for a polynomial:** *lim*<sub>*x→1*</sub> *(3x^3 + 7x^2 - 2x + 1)* = *lim*<sub>*x→1*</sub> *(3x^3)* + *lim*<sub>*x→1*</sub>*(7x^2)* + *lim*<sub>*x→1*</sub>*(-2x)* + *lim*<sub>*x→1*</sub>*(1)* = 3 *lim*<sub>*x→1*</sub> *(x^3)* + 7 *lim*<sub>*x→1*</sub> *(x^2)* + (-2) *lim*<sub>*x→1*</sub> *(x)* + 1 = 3 (*lim*<sub>*x→1*</sub> *x*)^3 + 7 (*lim*<sub>*x→1*</sub> *x*)^2 - 2 *lim*<sub>*x→1*</sub> *x* + 1 = 3 *1^3* + 7 *1^2* - 2 *1* + 1 = 9 = *f(1)* So, for any given polynomial *f(x)*: *lim*<sub>*x→b*</sub> *f(x)* = *lim*<sub>*x→b*</sub> *(anx^n + a<sub>n-1</sub>x<sup>n-1</sup> + … + aix + a<sub>0</sub>)* = *anb^n + a<sub>n-1</sub>b<sub>n-1</sub> + … + a<sub>1</sub>b + a<sub>0</sub>* = *f(b)* 4. **A rational function is of the form *f(x) = p(x) / q(x)* where *p(x)* and *q(x)* are polynomials, so *lim*<sub>*x→a*</sub> *f(x)* = *lim*<sub>*x→a*</sub> *p(x)* / *lim*<sub>*x→a*</sub> *q(x)* = *p(a) / q(a)* (*= f(a)*) provided that *lim*<sub>*x→a*</sub> *q(x) ≠ 0*, and *q(a) ≠ 0*. **Example:** Suppose that *lim*<sub>*x→2*</sub> *f(x)* = 4, *lim*<sub>*x→2*</sub> *g(x)* = 5, and *lim*<sub>*x→2*</sub> *h(x)* = 8, then * (a) *lim*<sub>*x→2*</sub> *(f(x) - g(x)) / h(x)* = *lim*<sub>*x→2*</sub> *(f(x) - g(x)) / *lim*<sub>*x→2*</sub> *h(x)* = *(lim*<sub>*x→2*</sub> *f(x) - lim*<sub>*x→2*</sub> *g(x)) / *lim*<sub>*x→2*</sub> *h(x)* = (4 - 5) / 8 = -1 / 8 * (b) *lim*<sub>*x→2*</sub> *(6 * f(x) *g(x)) - h(x)* = *lim*<sub>*x→2*</sub> *(6 * f(x) *g(x))* - *lim*<sub>*x→2*</sub> *h(x)* = 6 *lim*<sub>*x→2*</sub> *f(x)* *lim*<sub>*x→2*</sub> *g(x)* - *lim*<sub>*x→2*</sub> *h(x)* = 6 * 4 * 5 + 8 = 128 **Example:** If *f(x) = 3x^2 - 4x / 5x^2 - 36* then *lim*<sub>*x→2*</sub> *f(x)* = *lim*<sub>*x→2*</sub> *(3x^2 - 4x) / (5x^2 - 36)* = *(3 * 2^2 - 4 * 2) / (5 * 2^2 - 36)* = 4 / 1 **Example:** Find *lim*<sub>*x→1*</sub> *(5x^4 - 3x^2 + 8x - 6) / (x + 1)* 5. **Alg functions.** Let's do it by an example. **Example:** We will calculate the following limit. *lim*<sub>*x→2*</sub> *√(2x^2 + 9) + 3x - 1 / 4x + 1* = *lim*<sub>*x→2*</sub> *(√(2x^2 + 9) + 3x - 1) / *lim*<sub>*x→2*</sub> *(4x + 1)* = (*lim*<sub>*x→2*</sub> *(√(2x^2 + 9))½* + *lim*<sub>*x→2*</sub> *(3x - 1)* ) / *lim*<sub>*x→2*</sub> *(4x + 1)* = (√(2 * 2^2 + 9))½ + (3 * 2 - 1) / 4 * 2 + 1 = √(25) + 5 / 9 = 10 / 9 Note that the limit for *x < √(25/2)* does not exist (why?) and to *x = √(25/2)*, we can approach only from right (why? Find it!) For piecewise functions, we should be more careful for the boarders, as the left and the right limit may differ. **Example:** Let *f(x) = -2x + 4 if x ≤ 1* and *√(x - 1)* if *x > 1*. Find *lim*<sub>*x→1-*</sub> *f(x)* = 0 *lim*<sub>*x→1+*</sub> *f(x)* = 2 *lim*<sub>*x→1*</sub>*f(x)* does not exist! In a rational (or alg) function, if we have 0/0, we need to use other techniques. In these examples we see two of them. **Example:** (a) *lim*<sub>*x→2*</sub> *(x^2 - 6x + 8) / (x^2 - 4)* = *lim*<sub>*x→2*</sub>*(x - 2)(x - 4) / (x - 2)(x + 2)* = *lim*<sub>*x→2*</sub> *(x - 4) / (x + 2)* = (2 - 4) / (2 + 2) = -2 / 4 = -1 / 2 Note that the cancellation is allowed in the limit, not for the function itself, because *f(x) = (x^2 - 6x + 8) / (x^2 - 4)* is different from *g(x) = (x - 4) / (x + 2)* why? (b) *lim*<sub>*x→1*</sub> *√x - 1 / x - 1* = *lim*<sub>*x→1*</sub> *√x - 1 / x - 1* *lim*<sub>*x→1*</sub> *(√x + 1) / (√x + 1)* = *lim*<sub>*x→1*</sub> *(x - 1) / (x - 1) * (√x + 1)* = *lim*<sub>*x→1*</sub> *(√x + 1)* = √1 + 1 = 2 **Example:** Find *lim*<sub>*x→5*</sub> *(x^2 - 7x + 10) / (x - 5)* ### Theorem: **Theorem:** Assume the functions *f, g*, and *h* satisfy *f(x) ≤ g(x) ≤ h(x)* for all values of *x* near *a*, except possibly at *a*. If *lim*<sub>*x→a*</sub> *f(x) = lim*<sub>*x→a*</sub> *h(x) = L*, then *lim*<sub>*x→a*</sub> *g(x) = L*. We call this theorem, the squeeze theorem. (*g* is squeezed between *f* and *h* near *a*) **Example:** For -π/2 ≤ x ≤ π/2, we can show that (a) |-1| ≤ sin x ≤ |x| and (b) 0 ≤ 1 - cos x ≤ |x|. (Try to prove these inequalities) Using squeeze theorem, we can show that *lim*<sub>*x→0*</sub> *sin x* = 0 and *lim*<sub>*x→0*</sub> *cos x* = 1 (Write the details) **Example:** Recall that *lim*<sub>*x→0*</sub> *sin(1/x)* does not exist, but we can show that *lim*<sub>*x→0*</sub> *x sin(1/x)* = 0. We know that for any *x* -1 ≤ sin(1/x) ≤ 1 (shown before) ⇒ -x^2 ≤ x^2 sin(1/x) ≤ x^2 And *lim*<sub>*x→0*</sub> *(-x^2)* ≤ *lim*<sub>*x→0*</sub> *x^2 sin(1/x)* ≤ *lim*<sub>*x→0*</sub> *(x^2)* ⇒ *lim*<sub>*x→o*</sub> *x^2 sin(1/x)* = 0 **Example:** Suppose that *f* satisfies: 1 ≤ *f(x)* ≤ 1 + x^2 for all values near zero. Find *lim*<sub>*x→0*</sub> *f(x)*.

Use Quizgecko on...
Browser
Browser