Lecture Chapter 2 2014 Addition - PDF
Document Details
Uploaded by CelebratoryGyrolite5893
Tags
Summary
This document is a lecture on atomic structure and interatomic bonding. It discusses various types of chemical bonding, such as ionic, covalent, and metallic bonding, and includes examples.
Full Transcript
Chapter 2 ATOMIC STRUCTURE AND INTERATOMIC BONDING Electronegativity Electronegativity, symbol χ, is a chemical property that describes the ability of an atom to attract electrons towards itself in a covalent bond. First proposed by Linus Pauling in 1932 as a dev...
Chapter 2 ATOMIC STRUCTURE AND INTERATOMIC BONDING Electronegativity Electronegativity, symbol χ, is a chemical property that describes the ability of an atom to attract electrons towards itself in a covalent bond. First proposed by Linus Pauling in 1932 as a development of valence bond theory, it has been shown to correlate with a number of other chemical properties. Electronegativity cannot be directly measured and must be calculated from other atomic or molecular properties. Several methods of calculation have been proposed and, although there may be small differences in the numerical values of the electronegativity, all methods show the same periodic trend between elements. The difference in electronegativity between atoms A and B is given by: where the dissociation energy, Ed, of the A–B, A–A and B–B bonds are expressed in electron volts, the factor (eV)−½ being included to ensure a dimensionless result. Hence, the difference in Pauling electronegativity between hydrogen and brome is 0.7 (dissociation energies: H–Br, 3.79 eV; H–H, 4.52 eV; Br–Br 2.00 eV) ELECTRONEGATIVITY Electropositive elements: Electronegative elements: Readily give up electrons Readily acquire electrons to become + ions. to become - ions. EXAMPLES: IONIC BONDING NaCl MgO CaF2 Cs Cl Ionic bonding energy is relatively large: 600-1500 kJ/mol (3-8 eV/atom; 1eV=1.602 x 10-19 J) The ionic materials typically have high melting point, are hard and brittle as well as electrically and thermally insulators Example: Ceramics (MgO, SiO2 etc.) IONIC BONDING (1) Occurs between + and - ions. Requires electron transfer. Large difference in electronegativity required. Example: NaCl Na (metal) Cl (nonmetal) unstable unstable electron Z2 Z1 Na (cation) + - Cl (anion) stable Coulomb stable Attraction ( Z1e)(Z 2 e) 1 EA 0 – a vacuum permittivity (8.85 10-12 F/m) 4 0 r IONIC BONDING (2) EXAMPLES: COVALENT BONDING column IVA H2 F2 C(diamond) Cl 2 Si C C 2.5 Si 1.8 Ge 1.8 Sn 1.8 Pb 1.8 GaAs Nonmetallic Molecules: H2, Cl2, F2 Molecules with dissimilar atoms: CH4, HNO3, HF Elemental solids ( e.g. column IVA: C, Si, Ge, etc,) Compound solids (columns IIIA, IVA, VA: SiC, GaAs, InSb) Polymeric Materials COVALENT BONDING (1) Requires shared electrons Electronegativities are comparable shared electrons H from carbon atom The number of covalent bonds that is possible for a specific atom is determined by number of valance electrons (Nv): Number of covalent bonds = 8-Nv H C H Examples: Carbon – Nv=4 Number of covalent bonds = 8 –4 = 4 H shared electrons from hydrogen atoms Methane (CH4): Carbon has 4 valence e and needs 4 more, while H has 1 valence e, and needs 1 more Diamond: each carbon atom covalently bonds with 4 other C atoms. COVALENT BONDING (2) COVALENT BONDING (3) Mixing Bonds Very few compounds exhibit pure ionic or covalent bonding The degree of either bond type depends on the different in their electronegativities (i.e. relative element position in the periodic table): - the greater the difference in electronegativity – the more ionic bond - the smaller the difference in electronegativity (i.e. closer the atoms together in periodic table) – the greater the degree of covalent bonds. To estimate the % of ionic bonds between elements A and B one can use the following expression: % ionic character = {1-exp [-0.25(XA-XB)2] }x 100 where Xa and XB are elements electronegativity. http://www.youtube.com/watch?v=Ibr63AjnEoQ METALLIC BONDING (1) Arises from a sea of donated valence electrons (1, 2, or 3 from each atom). Metallic bonding: for Group IA and IIA of periodic table and all metals Bonding energy: wide range - - - E(Hg)= 0.7eV/at E(W)=8.8.eV/at Ions Properties: good electro/thermal conductors (electron “sea”!) “Sea” of valence electrons and ductile materials (Chapter 7) Primary bond for metals and their alloys METALLIC BONDING (2) EXAMPLES: METALLIC BONDING !!! SECONDARY (van der Waals) BONDING (1) Arises from interaction between dipoles Week physical bonding: E ~0.1 eV/atom an electrically an induced symmetric atom atomic dipole Short –lived distortion of the electrical symmetry by thermal vibration motion Fluctuating-induced dipoles bonding Example: liquid H2 H2 H2 H H H H secondary bonding SECONDARY (van der Waals) BONDING (2) Permanent dipoles - molecule induced Examples: Asymmetrical arrangement of the electrical field for liquid HCl polar molecules H Cl secondary H Cl bonding polymer Special and the strongest (E~0.5eV/atom) type of polar molecule bond is so-called hydrogen bond In molecule where H is covalently bonded (i.e. shared electron) to Fluorine (e.g. HF), Oxygen (e.g. H2O) and nitrogen (e.g. NH3). The H end of the molecule is highly positively charged – provides strong attractive interaction with the negative end of the adjacent molecule. SECONDARY (van der Waals) BONDING (3) POLYMERS A polymer is a macromolecule (long molecules) built (covalently bonded !!) of small units called “mer” (from the Greek word meros meaning part). The small units are repeated successively throughout the macromolecule chain. The smallest unit is the monomer (a single mer unit). In turn these long molecules are bonded together by weak Van der Waals and hydrogen (secondary) bonds, or plus covalent cross-links. THE STRUCTURE of POLYMERS: Hydrocarbon Molecules Most polymers are organic, and formed from hydrocarbon molecules Each C atom has four e- that participate in bonds, each H atom has one bonding e- Attachment of different organic groups to the hydrocarbon backbone offers wide variety of possible polymers Examples of saturated (all bonds are single ones) hydrocarbon molecules (of type CnH2n+2) Comparison of Different Atomic Bonds SUMMARY: BONDING Type Bond Energy Comments Ionic Large! Nondirectional (ceramics) Variable Directional Covalent large-Diamond (semiconductors, ceramics small-Bismuth polymer chains) Variable Metallic large-Tungsten Nondirectional (metals) small-Mercury Directional Secondary smallest inter-chain (polymer) inter-molecular