Real Analysis Lecture 6 PDF

Summary

This lecture provides an overview of real analysis concepts, specifically focusing on theorems about sequences, including monotone sequences, and limits for sequences. The document explains various theorems, including the Sandwich Theorem, Bolzano-Weierstrass theorem, and the Monotone Convergence Theorem. It also defines divergent sequences and gives examples.

Full Transcript

Theorem Let lim ๐‘ฅ๐‘› = ๐‘ฅ, then ๐‘›โ†’โˆž a) If ๐‘ฅ๐‘› โ‰ฅ ๐‘Ž โˆ€๐‘› โˆˆ โ„•, then ๐‘ฅ โ‰ฅ ๐‘Ž b) If ๐‘ฅ๐‘› โ‰ค ๐‘ โˆ€๐‘› โˆˆ โ„•, then ๐‘ฅ โ‰ค ๐‘ Sandwich Theorem Let lim ๐‘ฅ๐‘› = ๐‘™ = lim ๐‘ง๐‘› and ๐‘ฅ๐‘› โ‰ค ๐‘ฆ๐‘› โ‰ค ๐‘ง๐‘› ๐‘› โˆˆ โ„•, then lim ๐‘ฆ๐‘› = ๐‘™ ๐‘›โ†’โˆž ๐‘›โ†’โˆž ๐‘›โ†’โˆž Proof Since lim ๐‘ฅ๐‘› = ๐‘™ = lim ๐‘ง๐‘› given ๐œ€ > 0, the...

Theorem Let lim ๐‘ฅ๐‘› = ๐‘ฅ, then ๐‘›โ†’โˆž a) If ๐‘ฅ๐‘› โ‰ฅ ๐‘Ž โˆ€๐‘› โˆˆ โ„•, then ๐‘ฅ โ‰ฅ ๐‘Ž b) If ๐‘ฅ๐‘› โ‰ค ๐‘ โˆ€๐‘› โˆˆ โ„•, then ๐‘ฅ โ‰ค ๐‘ Sandwich Theorem Let lim ๐‘ฅ๐‘› = ๐‘™ = lim ๐‘ง๐‘› and ๐‘ฅ๐‘› โ‰ค ๐‘ฆ๐‘› โ‰ค ๐‘ง๐‘› ๐‘› โˆˆ โ„•, then lim ๐‘ฆ๐‘› = ๐‘™ ๐‘›โ†’โˆž ๐‘›โ†’โˆž ๐‘›โ†’โˆž Proof Since lim ๐‘ฅ๐‘› = ๐‘™ = lim ๐‘ง๐‘› given ๐œ€ > 0, there exist positive integers ๐‘š1 and ๐‘š2 such ๐‘›โ†’โˆž ๐‘›โ†’โˆž |๐‘ฅ โˆ’ ๐‘™ | < ๐œ€ that ๐‘› โˆ€๐‘› โ‰ฅ ๐‘š= ๐‘š๐‘Ž๐‘ฅ{๐‘š1 , ๐‘š2 } |๐‘ง๐‘› โˆ’ ๐‘™ | < ๐œ€ โ‡’ ๐‘™ โˆ’ ๐œ€ < ๐‘ฅ๐‘› โ‰ค ๐‘ฆ๐‘› โ‰ค ๐‘ง๐‘› < ๐‘™ + ๐œ€ โˆ€๐‘› โ‰ฅ ๐‘š โ‡’ ๐‘™ โˆ’ ๐œ€ < ๐‘ฆ๐‘› < ๐‘™ + ๐œ€ โˆ€๐‘› โ‰ฅ ๐‘š Hence lim ๐‘ฆ๐‘› = ๐‘™ ๐‘›โ†’โˆž Theorem ๐‘ฅ1+๐‘ฅ2 +โ‹ฏ+๐‘ฅ๐‘› If lim ๐‘ฅ๐‘› = 0, then lim ( )=0 ๐‘›โ†’โˆž ๐‘›โ†’โˆž ๐‘› Note the converse of the above theorem need not be true. Monotone sequences Definition A sequence {๐“๐‘› } is said to be a) monotone increasing (or non-decreasing) if ๐‘ฅ๐‘› โ‰ค ๐‘ฅ๐‘›+1 โˆ€๐‘› โˆˆ โ„• b) Strictly monotone increasing if ๐‘ฅ๐‘› < ๐‘ฅ๐‘›+1 โˆ€๐‘› โˆˆ โ„• c) Monotone decreasing (or non-increasing) if ๐‘ฅ๐‘› โ‰ฅ ๐‘ฅ๐‘›+1 โˆ€๐‘› โˆˆ โ„• d) Strictly monotone decreasing if ๐‘ฅ๐‘› > ๐‘ฅ๐‘›+1 โˆ€๐‘› โˆˆ โ„• A sequence is said to be monotone if {๐“๐‘› } is either monotone increasing or monotone decreasing. Example The sequence {1,2,3,4,4, 4...} is a monotone increasing but not strict. The sequence {n} is strictly monotone increasing. Theorem 1 A monotone increasing and bounded above sequence converges to its supremum. Proof Let {๐“๐‘› } be a monotone increasing bounded above sequence. Let R= {๐‘ฅ1 , ๐‘ฅ2 โ€ฆ } be the range set of {๐“๐‘› }. Since {๐“๐‘› } is bounded above, R is bounded above. Then by completeness property, R has a supremum say M. Let ๐œ€ > 0 be given, then there exist an ๐‘ฅ๐‘˜ โˆˆ ๐‘… such that ๐‘€ โˆ’ ๐œ€ < ๐‘ฅ๐‘˜ โ‰ค ๐‘ฅ๐‘› โˆ€๐‘› โ‰ฅ ๐‘˜ ({๐“๐‘› } is a monotone increasing) โ‰คM (M is the supremum of R) < ๐‘€ + ๐œ€ (๐œ€ > 0) โ‡’ ๐‘€ โˆ’ ๐œ€ < ๐‘ฅ๐‘› < ๐‘€ + ๐œ€ โˆ€๐‘› โ‰ฅ ๐‘˜ โ‡’ |๐‘ฅ๐‘› โˆ’ ๐‘€| < ๐œ€ โˆ€๐‘› โ‰ฅ ๐‘˜ โ‡’ {๐“๐‘› } is convergent and converges to M. Theorem 2 A monotone decreasing and bounded below sequence converges to its infimum. From the above theorem 1 and 2, we get the following theorem: Monotone Convergent theorem. A monotone sequence is convergent if and only if it is bounded Subsequence Definition Let {๐“๐‘› } be a sequence and {๐‘›๐‘˜ } be a strictly increasing sequence in โ„•. The sequence {๐“๐‘›๐‘˜ } is called a subsequence of {๐“๐‘› }. Theorem A sequence {๐“๐‘› } converges to ๐“ if and only if every subsequence of {๐“๐‘› } converges to ๐“. Proof Let {๐“๐‘›๐‘˜ } be an arbitrary subsequence of {๐“๐‘› }. Suppose first that {๐“๐‘› } converges to ๐“. Then for each ๐œ€ > 0 there exists a positive integer ๐‘š such that |๐‘ฅ๐‘› โˆ’ ๐‘ฅ | < ๐œ€ โˆ€๐‘› โ‰ฅ ๐‘š. If ๐‘˜> ๐‘š then ๐‘›๐‘˜ โ‰ฅ ๐‘˜> ๐‘š. Therefore, |๐‘ฅ๐‘› โˆ’ ๐‘ฅ | < ๐œ€ โˆ€๐‘˜> ๐‘š. This shows that {๐“๐‘›๐‘˜ } converges to ๐“. Then for each ๐œ€ > 0 there exists a positive integer N such that |๐‘ฅ๐‘›๐‘˜ โˆ’ ๐‘ฅ | < ๐œ€ โˆ€๐‘˜ โ‰ฅ ๐‘ โ‡’ {๐“๐‘› } converges to ๐‘ฅ Bolzano Weiertrass theorem Every bounded sequence of real numbers has a convergent subsequence. Proof We call the ๐‘š๐‘กโ„Ž term of ๐‘ฅ๐‘š of the sequence {๐“๐‘› } a โ€œpeakโ€ if ๐‘ฅ๐‘š โ‰ฅ ๐‘ฅ๐‘› โˆ€๐‘› โ‰ฅ ๐‘š Case 1 If {๐“๐‘› } has infinitely many peaks, order them by increasing subscripts ๐‘š1 < ๐‘š2 < โ‹ฏ < ๐‘š๐‘˜ โ€ฆ Since each of ๐‘ฅ๐‘š1 , ๐‘ฅ๐‘š2 is a peak, we have ๐‘ฅ๐‘š1 โ‰ฅ ๐‘ฅ๐‘š2 โ‰ฅ ๐‘ฅ๐‘š3 โ€ฆ We thus get a subsequence {๐‘ฅ๐‘š๐‘˜ } of {๐“๐‘› } which is monotone decreasing. Also {๐‘ฅ๐‘š๐‘˜ } is bounded since {๐“๐‘› } is bounded. By monotone convergence theorem, {๐‘ฅ๐‘š๐‘˜ } is convergent. Case 2 Let {๐“๐‘› } has a finite number of peaks namely ๐‘ฅ๐‘š1 , ๐‘ฅ๐‘š2 , ๐‘ฅ๐‘š๐‘˜ ,... Put ๐‘˜1 = ๐‘š๐‘˜ + 1. Then ๐‘ฅ๐‘˜1 is not a peak, there exists a ๐‘˜2 > ๐‘˜3 such that ๐‘ฅ๐‘˜3 >๐‘ฅ๐‘˜2 Continuing this way, we get a subsequence {๐‘ฅ๐‘˜1 } of {๐“๐‘› } which is monotone increasing. Also, since {๐“๐‘› } is bounded, {๐“๐‘˜๐‘™ } is bounded. Therefore, by monotone convergence theorem, {๐“๐‘˜๐‘™ } is convergent. Divergent sequences Definition A sequence {๐“๐‘› } of real numbers is said to a) Diverge to +โˆž, written lim ๐‘ฅ๐‘› = + โˆž if for every real number p, there exists a ๐‘›โ†’โˆž positive integer G=G(p) (depending on p) however large it may be such that ๐‘ฅ๐‘› > ๐‘ โˆ€๐‘› โ‰ฅ ๐บ(๐‘) b) Diverges to -โˆž, written as lim ๐‘ฅ๐‘› = โˆ’ โˆž if every real number q there exists a ๐‘›โ†’โˆž positive integer H=H(q) (depending on 1) however small it may be such that ๐‘ฅ๐‘› < ๐‘ž โˆ€๐‘› โ‰ฅ ๐ป(๐‘ž) A sequence is said to be divergent to +โˆž or diverges to โˆ’โˆž. Examples 1) The sequence {n} diverges to +โˆž 2) The sequence {1 โˆ’ ๐‘›2 } diverges to โˆ’โˆž

Use Quizgecko on...
Browser
Browser