Lecture 3.0 - Acid Base I Notes_2024.pptx
Document Details
Uploaded by SilentPlumTree
University of the Witwatersrand
2024
Tags
Full Transcript
Acid - Base Disorders Introduction and physiology Dr Shaida Khan Pathologist Department of Chemical Pathology University of the Witwatersrand Chris Hani Baragwanath Hospital shaida.khan @nhls.a.c.za ...
Acid - Base Disorders Introduction and physiology Dr Shaida Khan Pathologist Department of Chemical Pathology University of the Witwatersrand Chris Hani Baragwanath Hospital shaida.khan @nhls.a.c.za Objectives 1. The role of buffers, the renal and respiratory systems in acid base balance 2. Henderson-Hasselbach equation 3. Assessing acid base balance: An approach and laboratory parameters (blood gas analysis, bicarbonate concentrations, anion gap) 4. Acid base disorders Terminology Acid Substance that donates H+ ions Base Substance that accepts H+ ions Acidosis Excess acid Alkalosis Excess base Acidaemia pH < 7.35 Alkalaemia pH > 7,45 Buffer Mixture of a weak acid and its conjugate base which lessens a change in [H+] when a strong acid/base is added. Definitions Acid is a substance that donates protons [H+] Base is a substance that accepts protons [H+] Base HCl + NH3 ⇌ NH4+ + Cl- Acid The concept of pH [H+] in the blood is 35 – 45 nmol/L nmol/L to mol 10-9 = 40 x 10-9 = 0.000000040 mol Neutral pH = 7, 10-7 pH = - log [H+] Acidic Basic = - log (40) 0 14 = 7,4 Physiological pH = 7,35 – 7,45 [H+] 40 to 80 pH decreases by 0.3 The importance of physiological [H+] Enzymes 1. Intracellular environment Metabolic intermediates Acidosis – hyperkalaemia, ionized 2. Electrolyte balance hypercalcaemia Alkalosis - hypokalaemia 3. Cardiac contractility Acidosis – decreased CC Alkalosis – decreased O2 delivery because of Hb affinity to 4. Oxygen delivery oxygen increased 5. Fatal Sources of [H+] Metabolic processes Aerobic metabolism Triglyceride breakdown Ketoacids CO2 ≈ H2CO3 Metabolism of phosphoric, sulphuric proteins and amino acids Anaerobic metabolism Lactic acid Phosphoric, sulphuric, hydrochloric acids Net 50 – 100 mmol H+ Maintaining [H+] Buffers Respiratory system Kidneys Seconds Minutes Hours to days Buffers Buffer is a mixture of a weak acid and its conjugate base which lessens a change in [H+] when a strong acid/base is added Bicarbonate buffer ECF Phosphate buffer ICF and Urine Haemoglobin buffer ECF Other protein buffers ICF Bone buffer Chronic acidosis Bicarbonate buffer H2CO3 ⇌ H+ + HCO3- Weak Acid Conjugate base Volatile acid Bicarbonate buffer CO2 + H2O ⇌ H2CO3 ⇌ H+ + HCO3- pKa = 6.1 Carbonic anhydrase pH = 7.4 Hyperventilation Hypoventilation Reclaim/ regenerate HCO3- and excrete Decrease CO2 Increase CO2 H+ Henderson Hessalbach Equation A-, Anion (mmol/L) 𝐻𝐶𝑂 3 − 𝑝𝐻 =6.1+𝑙𝑜𝑔 [ 0.03 𝑥 𝑃𝑎𝐶𝑂 2 ] pKa Solubility coefficient HA, Weak acid (mmHg) Henderson Hessalbach Equation 24 7.4=6.1+ 𝑙𝑜𝑔 1.2 [ ] The more stable this ratio, the more stable the pH Phosphate buffer H2PO4- ⇌ H+ + HPO42- Weak acid Conjugate base Intracellular pKa = 6.8 Urine Protein buffers Haemoglobin buffer Other protein buffers H2O + CO2 CO2 H+ + Protein ⇌ H.Protein HHb H2CO3 Hb- H+ + HCO3- HCO3- Cl- Cl- RBC Plasma Tissues Bone buffer HCO3- in bone water Exchange of protons on bone surface Carbonate and phosphate proton buffers released Reduced bone formation, increased bone resorption Respiratory regulation pH of CSF CO2 + H2O ⇌ H2CO3 ⇌ H+ + HCO3- Crosses BBB ↓pH ↑pH Medulla Central chemoreceptors Central chemoreceptors Brainstem Central chemoreceptors Increase ventilation Decrease ventilation ↓ CO2 ↑ CO2 Respiratory regulation PCO2, pH and PO2 ↑PaCO2, ↓pH, ↓PaO2 Peripheral chemoreceptors Peripheral chemoreceptors Increase ventilation Renal regulation Metabolic component: HCO3- and H+ HCO3- Reabsorption, regeneration H+ Excretion ↑H+ ↓pH ↓H+ ↑pH ↑HCO3 ↑Reabsorption, ↓HCO3 ↓Reabsorption, regeneration regeneration ↓H+ ↑Excretion ↑H+ ↓Excretion Bicarbonate reabsorption HCO3- reabsorption/ reclamation/ conservation 6% 80% 10% 4% Bicarbonate reabsorption Filtered HCO3- Filtered Na+ Na+ ATP K+ Na+ Na+ HCO3- + H+ H+ + HCO3- HCO3- Na+ H2CO3 H2CO3 HCO3- CA CA Cl- Net HCO3- reabsorption No net H+ excretion H2O + CO2 CO2 + H2O Proximal Blood Tubular renal lumen Bicarbonate regeneration Linked to H+ excretion Titratable acidity Filtered HPO42- H+ K+ K+ ATP HPO42- + H+ H+ + HCO3- HCO3- ATP Cl- H2CO3 H2PO4 Titratable acid CA Excreted in urine H2O New HCO3- absorbed CO2 + Net acid excretion Tubular lumen Intercalated cell Blood Bicarbonate regeneration Ammoniagenesis Na+ Na+ ATP K+ H+ + HCO3- HCO3- Cl- NH3+ NH3 + H+ α ketoglutarate NH4 Glutamate NH4 NH4 formed Reabsorbed in TAL Glutamine New HCO3- Tubular lumen Proximal tubular cell Blood Bicarbonate regeneration Ammoniagenesis NH3 from medullary interstitium K+ K+ ATP NH3 + H+ H+ + HCO3- HCO3- ATP Cl- H2CO3 NH4 CA Excreted in urine CO2 + H2O Net H+ excreted as NH4 New HCO3- Tubular lumen Intercalated cell Blood Approach Traditional approach Stewart’s approach Henderson-Hasselbach equation Physiochemical approach 𝐻𝐶𝑂 3 − 𝑝𝐻 =6.1+𝑙𝑜𝑔 [ 0.03 𝑥 𝑃𝑎𝐶𝑂 2 ] PaCO2 ATOT Independent variables SID HCO3- Independent variables CO2 Approach 𝐻𝐶𝑂 3 − Acid base status 𝑝𝐻 =6.1+ 𝑙𝑜𝑔 [0.03 𝑥 𝑃𝑎𝐶𝑂 2 ] Acidosis Alkalosis Respiratory Metabolic Interpreting pH, HCO3, PCO2 Primary disorder Metabolic 𝐻𝐶𝑂 3 − 𝑝𝐻 =6.1+ 𝑙𝑜𝑔 [ 0.03 𝑥 𝑃𝑎𝐶𝑂 2 ] Or Respiratory 7.45, Alkalaemia Metabolic or Respiratory Alkalosis Interpreting pH, HCO3, PCO2 Compensation Metabolic 𝐻𝐶𝑂 3 − 𝑝𝐻 =6.1+ 𝑙𝑜𝑔 [ 0.03 𝑥 𝑃𝑎𝐶𝑂 2 ] compensation Primary: Respiratory acidosis 7.45, Alkalaemia Metabolic alkalosis with respiratory compensation Interpreting pH, HCO3, PCO2 Compensation Complete = pH is normal, HCO3- and CO2 abnormal Partial = pH is abnormal, HCO3- and CO2 abnormal Interpreting pH, HCO3, PCO2 Correction Compensation: Response by non-primary system to bring pH back within range Correction: Response by the body to bring all parameters within range Laboratory parameters Blood gas U&E Laboratory parameters Blood gas 1. Arterial/Capillary blood Electrodes 2. Anticoagulated 3. Sealed syringe 4. On ice 5. Minimal delays Actual bicarbonate using H-H equation: pH and PaCO2 Standard bicarbonate is better – Corrected for abnormal PaCO2 Standard base excess – Corrected for CO2, temperature, effect of Hb as a buffer Laboratory parameters U&E 1. Serum sample 2. Minimize significant delays Measured TCO2 Calculated using 4 parameters: Na+, K+, CL-, HCO3- Laboratory parameters Overview 𝐻𝐶𝑂 3 − Arterial blood gas - Measured pH 𝑝𝐻 =6.1+ 𝑙𝑜𝑔 [ 0.03 𝑥 𝑃𝑎𝐶𝑂 2 ] Arterial blood gas - Calculated base excess - Calculated standard bicarbonate U&E/C Arterial blood gas - Measured HCO3- - Measured PaCO2 (TCO2) Acid Base Disorders pH < 7.35 > 7.45 Acidosis Alkalosis Respiratory Metabolic Respiratory Metabolic Respiratory acid base disorders Respiratory acidosis - Causes Inadequate mechanical ventilation CNS depression Hypoventilation Airway obstruction CO2 Lung defects Increased CO2 intake Nerve, muscle, chest wall disorders Respiratory acid base disorders Respiratory acidosis – Primary disorder 𝐻𝐶𝑂 3 − Hypoventilation 𝑝𝐻 =6.1+ 𝑙𝑜𝑔 [ 0.03 𝑥 𝑃𝑎𝐶𝑂 2 ] CO2 CO2 + H2O ⇌ H2CO3 ⇌ H+ + HCO3- Respiratory acid base disorders Respiratory acidosis – Compensation Metabolic Compensation Hypoventilation 𝐻𝐶𝑂 3 − CO2 𝑝𝐻 =6.1+ 𝑙𝑜𝑔 [ 0.03 𝑥 𝑃𝑎𝐶𝑂 2 ] Respiratory acid base disorders Respiratory acidosis – Compensation Ventilation Acute CO2 ECF/ Tissues Hypoventilation CO2 + H2O ⇌ H2CO3 ⇌ H+ + HCO3- CO2 Buffering of H+ by Hb and proteins Small HCO3- H+ excretion H+ HCO3- reabsorption/ Greater HCO3- regeneration Chronic CO2 Respiratory acid base disorders Respiratory alkalosis – Causes Excessive mechanical ventilation CNS Hyperventilation Hypoxaemia CO2 Lung defects Respiratory acid base disorders Respiratory alkalosis – Primary disorder 𝐻𝐶𝑂 3 − Hyperventilation 𝑝𝐻 =6.1+ 𝑙𝑜𝑔 0.03 𝑥 𝑃𝑎𝐶𝑂 2 [ ] CO2 CO2 + H2O ⇌ H2CO3 ⇌ H+ + HCO3- Respiratory acid base disorders Respiratory alkalosis – Compensation Metabolic Compensation Hyperventilation 𝐻𝐶𝑂 3 − CO2 𝑝𝐻 =6.1+ 𝑙𝑜𝑔 [ 0.03 𝑥 𝑃𝑎𝐶𝑂 2 ] Respiratory acid base disorders Respiratory alkalosis – Compensation Equilibrium shifts Intracellular buffering Hyperventilation Acute CO2 Small HCO3- CO2 Chronic CO2 H+ H+ excretion HCO3- reabsorption/ Greater HCO3- regeneration