Power Electronics 2 Lecture 2 PDF
Document Details
Uploaded by TougherCanyon
Tags
Related
- UPDA Electrical/Electronic Engineering Reviewer Material No. 02 PDF
- Fundamentals of Electrical Engineering (ELE_1072) Lecture Notes PDF
- Power Electronics PDF - MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
- Power Electronics Converters, Applications, and Design (2nd Edition) PDF
- Power Electronics Converters, Applications, and Design PDF
- Power Electronics Converters, Applications, and Design PDF
Summary
This document is a set of lecture notes from a Power Electronics course. It covers topics including sinusoidal voltage parameters, oscilloscope measurements, and mathematical expressions. Calculations for average and RMS values of sinusoidal waveforms, as well as sinewaves with DC offset and average voltage are explained.
Full Transcript
Power Electronics 2 Lecture 2 Plan for today: Parameters of a Sinusoidal Voltage Using an Oscilloscope (DSO) to measure Sinusoidal parameters Mathematical expressions for a sinewave Average and rms values of a Sinusoidal waveform Calculating Average and Total rms for a Sinewave + DC Offset Powe...
Power Electronics 2 Lecture 2 Plan for today: Parameters of a Sinusoidal Voltage Using an Oscilloscope (DSO) to measure Sinusoidal parameters Mathematical expressions for a sinewave Average and rms values of a Sinusoidal waveform Calculating Average and Total rms for a Sinewave + DC Offset Power Electronics 2 Lecture 2 Measurements of a Sinusiodal Waveform Power Electronics 2 Parameters of a Sinusoidal Voltage Notes: 1. A pure sinusoidal voltage is ‘centred’ about zero volts 2. Vpk-pk = 2.Vpk 3. frequency(Hz) = 1 period (s) Lecture 2 Power Electronics 2 Digital Sampling Oscilloscope (DSO) Lecture 2 Power Electronics 2 Digital Sampling Oscilloscope (DSO) Display Lecture 2 Power Electronics 2 Digital Sampling Oscilloscope (DSO) Display Lecture 2 Power Electronics 2 Digital Sampling Oscilloscope (DSO) Display Lecture 2 Lecture 2 Power Electronics 2 Digital Sampling Oscilloscope (DSO) Display time/Div Volts/Div Examples: 2V/Div 10ms/Div Power Electronics 2 Know your Units Lecture 2 Power Electronics 2 Digital Sampling Oscilloscope (DSO) Display Example #1: Sinusoidal Voltage Lecture 2 Power Electronics 2 Lecture 2 Digital Sampling Oscilloscope (DSO) Display Example #1a: Calculating the Peak Voltage of a Sinewave 2.4 divisions Vpk 100mV/Div Peak Voltage (Vpk) = 2.4 x 100mV = 240mV Power Electronics 2 Lecture 2 Digital Sampling Oscilloscope (DSO) Display Example #1b: Calculating the period and frequency of a Sinewave 10ms/Div period = 7.4 divisions period = 7.4 x10ms = 74ms frequency (Hz) = 1/period(s) =13.5Hz Power Electronics 2 Lecture 2 Mathematical Expressions for a Sinusoidal Voltage Expressions for Instantaneous Voltage: Example: 50Hz (20ms) AC voltage ω = 2π.f ω = 2π.50 = 314 rad/sec v(q ) = VPKsinq v(t) = VPKsin(w t) where ω = Voltage frequency in rad/sec Note q=w.t Lecture 2 Power Electronics 2 Average value of a Sinusoidal Waveform: Vave = 1t v(q ).dq ò t 0 Vave = Vav 1 2p V ò 2p Sinq.dq pk 0 Graphically the average value is where the area above the line is equal to the area below the line Vpk 2p Vave = [-Cosq ]0 2p Vpk Vave = [-1+1] 2p Vave = 0 Lecture 2 Power Electronics 2 rms value of a Sinusoidal Waveform: rms stands for Root Mean Square, to determine the RMS value for a waveform you perform the following: Square the instantaneous waveform, take the Mean (Average) of this, and finally determine the square-root of the Mean éVpk 2 Vrms = ê êë 2p Mathematically: é1 t 2 ù Vrms = ê ò v (q )dq ú ët 0 û é 1 Vrms = ê ë 2p 2p éVpk 2 Vrms = ê ë 2p òV pk 0 2 2p öù é1 æ 1 ê 2 çq - 2 Sin2q ÷ú øû0 ë è éVpk 2 é 2p ùù Vrms = ê 0 0 + 0 úûú êë 2 p 2 ë û ù sin q .dq ú û 2 ù é1 ù ò0 êë 2 (1- cos2q )úû dq ú û Vpk 2 Vrms = 2 2p Note: this relationship is only true for a sinusoidal waveform Vrms = Vpk 2 ù ú úû Power Electronics 2 Resistance (R): v(t) = i(t).R (Ohms Law) Instantaneous Power: P(t) = v(t).i(t) Pave = Vpk.Ipk 2 Pave = Vpk . Ipk 2 2 Pave = Vrms.Irms Pmax = Vpk.Ipk Pave = Vpk.Ipk 2 Pmin = 0 Voltage Current Lecture 2 Power This is why rms values of voltage and current are important in AC systems Lecture 2 Power Electronics 2 Average Power Loss in a Resistor: DC System: Pave = Pave = 1t t òp .dq inst 0 1p v ò p .i .dq inst inst 0 Pave = VDC.IDC Pave = V ò p S inq.IpkS inq.dq Vpk .Ipk p pk 0 AC System: Pave = Pave = Vrms.Irms 1p p 2 sin ò q .dq 0 Pave = Vpk.Ipk ép ù = Vpk . Ipk p êë2 úû 2 2 In an AC system the rms values of voltage and current across a resistance results in the same power loss (HEAT) as that produced by the same values of voltage and current in a DC system – THAT’S WHY RMS IS IMPORTANT! Power Electronics 2 Sinewave + DC Offset Lecture 2 Lecture 2 Power Electronics 2 Sinewave + DC Offset: Average Voltage Vave = Vdc = V -Vpk _ sin = V max Vave = V max- (V max-V 2 ) min - max Vpk - pk 2 Lecture 2 Power Electronics 2 Sinewave + DC Offset: Total rms Voltage Vrms _ total = (V rms _ sin 2 +Vdc 2 ) where: Vdc = see previous slide Vrms _ sin = Vpk _ sin 2 = Vpk - pk 2 2 = (V max -V 2 2 min ) Power Electronics 2 Sinewave + DC Offset: Average Voltage 𝑉!"# = 12 𝑉 and 𝑉!$% = −3 𝑉 Determine: (1) VDC, (2) Vrms_sin, (3) Vrms_total TTC 2