Document Details

StylishSpessartine

Uploaded by StylishSpessartine

جامعة العلوم والتقانة

Tags

mutual information information theory probability

Full Transcript

Information Theory Mutual Information Mutual Information Measure of the amount of information that one random variable contains about another random variable p ( x, y ) I ( X ; Y )   p( x, y ) log xX yY p( x) p( y ) Mutu...

Information Theory Mutual Information Mutual Information Measure of the amount of information that one random variable contains about another random variable p ( x, y ) I ( X ; Y )   p( x, y ) log xX yY p( x) p( y ) Mutual Information Reduction in the uncertainty of one random variable due to the knowledge of the other. Relationship between entropy and mutual information : I ( X ; Y ) H (Y )  H (Y | X ) Proof: p ( x, y ) I ( X ; Y )    p( x, y ) log xX yY p( x) p( y ) p( y | x)    p( x, y ) log x X yY p( y)    p( x, y )[log p( y | x)  log p( y )] x X yY    p( x, y ) log p ( y | x)    p( x, y) log p( y) x X yY x X yY    p( x) p( y | x) log p( y | x)   p( y) log p( y) x X yY yY  H (Y | X )  H (Y ) H (Y )  H (Y | X ) Mutual information & Chain Rule I ( X ; Y ) H ( X )  H ( X | Y ) use _ chain _ Rule : H ( X , Y ) H ( X )  H (Y | X )  H (Y | X ) H ( X , Y )  H ( X )  I ( X ; Y ) H (Y )  [ H ( X , y )  H ( X )] I ( X ; Y ) H ( X )  H (Y )  H ( X , Y ) I ( X ; X ) H ( X )  H ( X | X ) H ( X ) Vein diagram I(X;Y) is intersection of information in X with with information in Y. Example Let X represent blood type and Y represent chance for skin cancer. Compute H(X) and H(Y), H(X,Y) H(X| Y),H(Y|X) and I(X;Y). Probability mass function defined as bellow: P(Y) O AB B A X Y 1/4 1/32 1/32 1/16 1/8 Very low 1/4 1/32 1/32 1/8 1/16 low 1/4 1/16 1/16 1/16 1/16 medium 1/4 0 0 0 1/4 high 1 1/8 1/8 1/4 1/2 P(X) Sol. X:marginal {1/2,1/4,1/8,1/8} X:marginal {1/4,1/4,1/4,1/4} 1 H ( X )   p ( x ) log x X p( x) 1 1 1 1  log 2 2  log 2 4  log 2 8  log 2 8 2 4 8 8 1 1 3 3     1.75bits 2 2 8 8 Sol. Cont. 1 H (Y )  p ( y ) log yY p( y) 1 ( log 2 4) * 4 2bits 4 1 1 3 3     1.75bits 2 2 8 8 1 H ( X , Y )  p ( x, y ) log xX yY p ( x, y ) 1 1 1 1 ( log 2 8) * 2  ( log 2 16) * 6  ( log 2 32) * 4  log 2 4 8 16 32 4 6 6 5 1 27      3.375bits 8 4 8 2 8 Sol. Cont. I ( X ; Y ) H ( X )  H (Y )  H ( X , Y ) 1.75  2  3.375 0.375bits H ( X | Y ) H ( X )  I ( X ; Y ) 1.75  0.375 1.375bits H (Y | X ) H (Y )  I ( X ; Y ) 2  0.375 1.625bits