lec(8)mutual information.pptx
Document Details
Uploaded by StylishSpessartine
جامعة العلوم والتقانة
Tags
Related
- NISM Series V-A Mutual Fund Distributors PDF
- NISM Series V-A MFD Certification Exam Workbook (August 2023) PDF
- Introduction to Information Theory PDF
- SEBI Investor Certification Examination - Securities Market Booklet PDF
- Account Opening PDF
- Project Report on Mutual Fund Awareness in Mumbai 2024-2025 PDF
Full Transcript
Information Theory Mutual Information Mutual Information Measure of the amount of information that one random variable contains about another random variable p ( x, y ) I ( X ; Y ) p( x, y ) log xX yY p( x) p( y ) Mutu...
Information Theory Mutual Information Mutual Information Measure of the amount of information that one random variable contains about another random variable p ( x, y ) I ( X ; Y ) p( x, y ) log xX yY p( x) p( y ) Mutual Information Reduction in the uncertainty of one random variable due to the knowledge of the other. Relationship between entropy and mutual information : I ( X ; Y ) H (Y ) H (Y | X ) Proof: p ( x, y ) I ( X ; Y ) p( x, y ) log xX yY p( x) p( y ) p( y | x) p( x, y ) log x X yY p( y) p( x, y )[log p( y | x) log p( y )] x X yY p( x, y ) log p ( y | x) p( x, y) log p( y) x X yY x X yY p( x) p( y | x) log p( y | x) p( y) log p( y) x X yY yY H (Y | X ) H (Y ) H (Y ) H (Y | X ) Mutual information & Chain Rule I ( X ; Y ) H ( X ) H ( X | Y ) use _ chain _ Rule : H ( X , Y ) H ( X ) H (Y | X ) H (Y | X ) H ( X , Y ) H ( X ) I ( X ; Y ) H (Y ) [ H ( X , y ) H ( X )] I ( X ; Y ) H ( X ) H (Y ) H ( X , Y ) I ( X ; X ) H ( X ) H ( X | X ) H ( X ) Vein diagram I(X;Y) is intersection of information in X with with information in Y. Example Let X represent blood type and Y represent chance for skin cancer. Compute H(X) and H(Y), H(X,Y) H(X| Y),H(Y|X) and I(X;Y). Probability mass function defined as bellow: P(Y) O AB B A X Y 1/4 1/32 1/32 1/16 1/8 Very low 1/4 1/32 1/32 1/8 1/16 low 1/4 1/16 1/16 1/16 1/16 medium 1/4 0 0 0 1/4 high 1 1/8 1/8 1/4 1/2 P(X) Sol. X:marginal {1/2,1/4,1/8,1/8} X:marginal {1/4,1/4,1/4,1/4} 1 H ( X ) p ( x ) log x X p( x) 1 1 1 1 log 2 2 log 2 4 log 2 8 log 2 8 2 4 8 8 1 1 3 3 1.75bits 2 2 8 8 Sol. Cont. 1 H (Y ) p ( y ) log yY p( y) 1 ( log 2 4) * 4 2bits 4 1 1 3 3 1.75bits 2 2 8 8 1 H ( X , Y ) p ( x, y ) log xX yY p ( x, y ) 1 1 1 1 ( log 2 8) * 2 ( log 2 16) * 6 ( log 2 32) * 4 log 2 4 8 16 32 4 6 6 5 1 27 3.375bits 8 4 8 2 8 Sol. Cont. I ( X ; Y ) H ( X ) H (Y ) H ( X , Y ) 1.75 2 3.375 0.375bits H ( X | Y ) H ( X ) I ( X ; Y ) 1.75 0.375 1.375bits H (Y | X ) H (Y ) I ( X ; Y ) 2 0.375 1.625bits