IPMAT MASTER QUEST 3.0 2025 Quant Functions - II PDF
Document Details
Uploaded by LovelyBanjo
2025
IPMAT
Tags
Related
- NCUK International Year One Business IDBQM001 Quantitative Methods for Business PDF 2023-2024 Exam Paper
- General Mathematics Relations & Functions PDF
- General Mathematics Lesson-1: Representation of Functions PDF
- General Mathematics PDF - Functions & Their Graphs
- Ch1 Mathematics Functions PDF
- Simplification Questions PDF Set 5
Summary
This document contains a set of practice questions from the IPMAT MASTER QUEST 3.0 2025 exam. It covers the topic of functions, including various types of function problems. It's suitable for undergraduate students preparing for mathematics-related exams.
Full Transcript
IPMAT MASTER QUEST 3.0 2025 (QUANT) Functions – II Lecture – 08 Q. Let f(x) be a function such that f(x + y) = f(x) + f(y) for all real numbers x and y. If f(1) = 2, find the value of f(5). (A) 11 (B) 10 (C) 1 (D) 0 Q. Let f(x) be a...
IPMAT MASTER QUEST 3.0 2025 (QUANT) Functions – II Lecture – 08 Q. Let f(x) be a function such that f(x + y) = f(x) + f(y) for all real numbers x and y. If f(1) = 2, find the value of f(5). (A) 11 (B) 10 (C) 1 (D) 0 Q. Let f(x) be a function such that f(2x) = 4f(x) for all real numbers x, and f(1) = 3. Find the value of f(8). (A) 192 (B) 191 (C) 193 (D) 190 Q. Let f(x) be a function such that f(x + 2) = f(x) + 6 for all real x, and f(1) = 4. Find the value of f(9). (A) 27 (B) 29 (C) 28 (D) 30 Q. Let f(x) be a function such that f(x + y) = f(x).f(y) for all real numbers x and y, and f(0) = 1. If f(2) = 4, find the value of f(4). (A) 4 (B) 32 (C) 8 (D) 16 Q. Let f(x) be a function such that f(2x) = 2f(x) + 3 for all real numbers x, and f(1) = 5. Find the value of f(2) + 7. (A) 20 (B) 13 (C) 17 (D) 10 b Q. If f a = a + 2 and 3f(b) = 18. What is the possible value of f ? 4 (A) 0 (B) 2 (C) 4 (D) –4 Q. For the modulus function 2m + 8 = |m + 10|. How many different values of m satisfies ? (A) 1 (B) 2 (C) 6 (D) 4 Q. The function f(x) is a product of all even integers from 1 to x inclusive, where x > 1. What is the value of f(81) – f(80) ? (A) 0 (B) 2 (C) 3 (D) 4 2 Q. If |a| = 2 and |b| = 5, how many possible values of a × b exist ? (A) 4 (B) 6 (C) 1 (D) 2 (a − m) Q. If f a = and g(a) = 7 + 5a. What is the value of m, if f(g(a)) = g(f(a)) ? 5 (A) 7 (B) 9 (C) 6 (D) 5 b Q. What is the minimum possible value of a, if |a – 8| = 18 and |3b – 18| = 12 ? (A) –0.4 (B) –1 (C) –2 (D) 5 Q. For the given modulus function ||a – 4| – 5| = 5, how many integer values of "a" satisfies it ? (A) 4 (B) 3 (C) 2 (D) 1 1 1 Q. What is the possible value of g(f(2)), if f = a−1 2 and g = 2a + 1 ? a a (A) 8 (B) 9 (C) 7 (D) 0 Q. For the given modulus function 2|a| + 3b = 27. How many positive integral values of (a, b) are possible such that b < 10 ? (A) 6 (B) 8 (C) 4 (D) 5 Q. Solve for x : |2x – 3| + | x + 1| = 7. 5 (A) x = −3, 3 5 (B) x = 3, 3 5 (C) x = −3, − 3 5 (D) x = 3, − 3 Q. If |x – 3| + |x – 10| > 24, then find the values of x. 11 37 (A) −∞, − ∪ , ∞ 2 2 11 37 (B) −∞, ∪ , ∞ 2 2 11 37 (C) −∞, − ∪ , ∞ 4 2 11 37 (D) −∞, ∪ , ∞ 4 2 Q. Find the range of x when ||x – 8| – 12| > 8. (A) (–∞, –12) ∪ (4, 12) ∪ (28, ∞) (B) (–∞, –12) ∪ (4, 12) ∪ (24, ∞) (C) (–∞, –12) ∪ (1, 12) ∪ (24, ∞) (D) (–∞, –12) ∪ (–4, 12) ∪ (28, ∞) Q. Find the minimum value of |x – 5| + |x – 15| + |x – 25| + |x – 50|. (A) 75 (B) 55 (C) 65 (D) 45 Q. Let f : R → R be a function satisfying the equation f(x + y) = f(x) + f(y) ∀ x, y ∈ R. Additionally, it is given that f(0) = 1. Which of the following could be f(x) ? (A) ax (B) x2 (C) 1+x (D) None of the above Q. Let f : R → R be a function satisfying the functional equation f(x + y).f(x – y) = f(x)2 – f(y)2, ∀ x, y ∈ R. If f(0) = 0, which of the following functions satisfied the equation ? (A) x2 (B) x (C) x3 (D) sin(x) Thank you