Document Details

UnaffectedRiemann6217

Uploaded by UnaffectedRiemann6217

Yashwantrao Chavan Maharashtra Open University

Tags

laplace transform signal processing mathematics engineering

Summary

These notes detail the concept of Laplace transforms, focusing on the conversion of differential equations to algebraic equations and the frequency-domain representation of signals. The various forms of signals and their Laplace transform pairs are demonstrated, including impulse, step, ramp, exponential, and sinusoidal signals.

Full Transcript

Umit Mo 5 Laplac Tantory Linan Tim Lnveutu ULTI) oro coe a elm L LT is p o w u l tool w tt Con dituwhal aau inte augebne ea Tran w - Convuuslon o me doi Slne into uouna domeln L...

Umit Mo 5 Laplac Tantory Linan Tim Lnveutu ULTI) oro coe a elm L LT is p o w u l tool w tt Con dituwhal aau inte augebne ea Tran w - Convuuslon o me doi Slne into uouna domeln LT dihuanhia auns CUL m t i m oomaiy aehbtc eals a im TG () T Lalau tramahorm of a tm Funchon ct) is dutin -st Lx)X)= |xey h u s u Complx vaiabla L u a l to s=6 tJ Two sidu or bilatua u n hemy lowi imt u changl to O o If then "on sidud or Unilatiul" |!xt]=X(t): zt)eat LT xCt) Xlt) paur sith X) xt) omy LT Resion of mvyKm Roc Xls)-Sxte"at - S-planL T h t o f pims in the S plane for wich 'megral X9 Comv is t h giom S6tJ R+I Comveujenu (ROC) of th Laplau trauhunm C Bilatt pla tramsr ofa sigmac Ct exih xs) "at nite - Subshtuhm s: 6+ in the abou e C6ti)t Lxcy=X) = o« tje iut F[xt Aboe x ls) is aindlicau tha basicady th Cnhmuw time Fow tramow cCt)et Th Loplaetramuhem a-xt t Fowi tranahom o st utie Exutenu aLoplsuatan x t t ) Should be Loninuw ingiu Closed intuvd 9CCt). e 6 t muut beabosdlu+y intaable e ct|dt coo x J 1cLt) Advange t L T s i g o l whidn o mt Conveunts inFT a Comveunt in UT ConvoluwHon in time domain Can be oPtaimedA by mulhplicahion in s dlmaur Dithwwhal be e" a sytem Can Convenbd into Simple alaubic a So LTI syttms be Can halned eai wima p l a tramatum Limitaiow hum pnL the S t Cannot be eatimatd Inttad on pole zco plot Com be dUlawm OS-jw w only for si moide sttasystiCUnai O Tmpule Signo t Set t= for t o fort#o L [ & t -X)=-[se -st e e Xls)=L - »(fr amg ) SCt L ROC is the enhr S-plan. i ROCAr s-plaun St gna ult) C t eutt) ult) for tro for t o X() x At st -3 s(u -slo) e S Xs) Lu - s-a4Ru> RC)o Th entis wgh hadM° t - plama Ramp Siana c t ) = tult) Ltult) = Xs)= x(t)t u v olt st -st L t -st s - (o - POC Rels)> -la ReCs)> Ralxpononiad Sianod eult Xls)L[eu)]-[xthut lt (s-t - (s-atn< A e - (S- (S) -(s- ,Xs) - S Re Cs-a) >o i-t Rels)>a ROC J S-plaae RoC e(s) a AjO Il tt X(s) » Ruls)>-aa Sta jw S-plexp RLCs)- -a C -6 ROc - , for ulty Compl apmuntial signo t) e utt) t ) es t Xu) -o ' es t - s T ot dt X19 = [ E S - j E ) X19 S -j Sjw ROC isRLs) >0 pla ult) X) SH RoCels) >o Sine Cosima Siane Sinwt lt) £ COS t ult) Xs) fewt Cos wt ult) XCs) etiwt -st e ot ataur ee t ( *(5 +i+s-J SJ) (S+ju) S s2w2 RLCS) > eie. Rels)>o sinsin wtul = ROCPets) >o jw Pels)o S-plan l - Prove tht t siqnady t)elt) xlt)z t hau th same XS) au) dtu on in Roc. Alse plot thai Rocs. So tt) -(Stat t -Uiyt» - (sta) o x(s) Sta.Roc Re(Sta) >o RLl) 7- S - P l a n a Aj Roc Pels) - a Ct) ut ul-t tor tso.'X)= - x T a (Sta)t e -lra) J- S+a Re(s)> - s +e) Re(s)-a Rpe-a S-Play 6 i n th Loplaeetrnsem ot th signad xCt» utd"uct) Lx -X) t e oUtt - ar + a -(S+)+1)t e (sAt At Convee COmv i A)>-4 - (s4)t5 x) s1) -LSt4) (o-+(o-1). -CS+1) S+I S+4 2S+5 Roc Rus) 71 5S't4 at Ct) eul+e ulty 4 Ayo Roc xs) e t(att - (s+2)t 2 s- Lonvuwy Comwu ) 7- PCs) 73 Conveyu H el) 3 S-plam la-jw RO Rals 3 Xla)=SEtuDt)4fG-Jt) e -GtJ (s- Co-1 +C0-) -(S+ -s-3) 2S POC et)>3 S - P w Xls) -CS+ Xtr) 2S 2t 4nd ihb Laut KU)=° - u-t) (S+2)t d -6 Coruy le

Use Quizgecko on...
Browser
Browser