ACTIA I+ME GmbH BMS Master 4/4.5 Hardware Manual PDF

Summary

This document is a hardware manual for the BMS Master 4/4.5 by ACTIA I+ME GmbH, released on January 15, 2018. It provides information on the appliance, safety, installation, and operation of the BMS system.

Full Transcript

Hardware Manual BMS Master 4 / 4.5 ACTIA I+ME GmbH Dresdenstrasse 17/18...

Hardware Manual BMS Master 4 / 4.5 ACTIA I+ME GmbH Dresdenstrasse 17/18 D-38124 Braunschweig Germany Tel.: + 49 (0) 531 38701-0 Fax: + 49 (0) 531 38701-88 www.ime-actia.com Hardware Manual BMS Master 4 / 4.5 Ref.: IR14417 A 15.01.2018 Page 1/76 Doc Template Erstellt von/am: R&D/19.01.2015 IR11262G Hardware Manual BMS Master 4 / 4.5 Document Reference Classification Internal Mailing List External Mailing List Name Department Name Department Without DKU R&D Confid. I+ME Confid. Client Status only for information Official Document Release Date: 15.01.2018 Initials Ref. I+ME Index 1412000037 Author KA IR14417 A approved DKU © ACTIA I+ME GmbH 2018 Document Histor y Index Page Date Reason of Change Name A All 26.07.2016 Hardware Manual Master 4 / 4.5, Revision based KA on Hardware Manual Master 4 A All 05.08.2016 Minor lingual corrections. JQU 21.10.2016 3.1.3.1 Switch OFF BMS – Kl15 / Kl30 KA 13.03.2017 3.5.4.5, 3.6.9, Slave Types (Balance Board) KA 18.08.2017 3.6.8.6 Slave 6 A voltage range KA 09.10.2017 6. Certificate Master 4.5 KA 19.12.2017 3.6.8.6 Slave 6 A voltage range KA 15.01.2018 3.2.2.2 new KA Client Approval Data and Name:............................................................................... Sign......................................................................................... © 2018 ACTIA I+ME GmbH All Rights reserved. Any reproduction or distribution of this document, or parts of this document is prohibited without a written authorization of ACTIA I+ME GmbH. Ref.: IR14417 A 15.01.2018 Page 2/76 Hardware Manual BMS Master 4 / 4.5 Content 1. Introduction......................................................................................................... 6 1.1 Appliance and Safety Information for ACTIA I+ME Battery Management System (BMS) Components............................................................................................................. 6 1.1.1. Determined Use, Connection and Installation................................................. 6 1.1.2. Warranty and Responsibility........................................................................ 6 1.1.3. Checking, Transport and Storage................................................................. 7 1.1.4. Remarks................................................................................................... 7 1.1.5. Symbols und Writings................................................................................. 8 1.1.6. Glossary................................................................................................... 8 2. General System description.................................................................................... 9 2.1 Diagram „System components“............................................................................ 9 2.2 Scheme „MASTER“............................................................................................ 10 2.3 Schematic for Slave C, Slave 5........................................................................... 11 2.4 Schematic for Slave 6....................................................................................... 12 3. Hardware........................................................................................................... 13 3.1 The Hardware of the MASTER........................................................................... 13 3.1.1. Block Diagram......................................................................................... 13 3.1.2. Enclosure views....................................................................................... 14 3.1.3. Interfaces............................................................................................... 15 3.1.3.1 Supply, connector CN101....................................................................... 15 3.1.3.2 Outputs, connector CN102...................................................................... 16 3.1.3.3 Inputs, connector CN103........................................................................ 16 3.1.3.4 Current Measurement and CAN2, connector CN104................................... 18 3.1.3.5 CAN Interface 1 & 3, connector CN105..................................................... 19 3.1.3.6 Slave Module Communication, connector CN106....................................... 19 3.1.3.7 RS232-Interface.................................................................................... 20 3.1.3.8 Ethernet- Interface................................................................................ 20 3.1.3.9 Internal Interfaces................................................................................. 21 3.1.3.10 LEDs................................................................................................... 21 3.1.4. Electromechanics..................................................................................... 21 3.1.5. Summary MASTER Connectors................................................................... 22 3.1.6. Electrical Specification.............................................................................. 23 3.1.7. Housing.................................................................................................. 23 3.1.8. Environmental Conditions.......................................................................... 24 3.1.9. Certifications........................................................................................... 24 3.2 Measurement of Current.................................................................................... 24 3.2.1. VAC-Sensor............................................................................................. 24 3.2.1.1 Connection to the MASTER..................................................................... 25 3.2.1.2 Current Divider 5:1............................................................................... 26 3.2.2. BAT-S 1000 1U Sensor............................................................................. 27 3.2.2.1 System integration................................................................................ 27 3.2.2.2 Measurement values.............................................................................. 28 3.2.2.3 Connecting the BAT-S 1000 1U Sensor to MASTER.................................... 28 3.2.2.4 Connecting the BAT-S 1000 1U sensor for voltage measurement................. 29 3.2.2.5 Technical Specification BAT-S 1000 1U - Sensor........................................ 29 3.2.3. IVT-B Sensor........................................................................................... 30 3.2.3.1 System integration................................................................................ 30 3.2.3.2 Connecting the Sensor to Master............................................................. 30 3.2.3.3 Connecting the Sensor for Voltage Measurement....................................... 31 3.2.3.4 Technical Specification IVT-B-Sensor....................................................... 31 3.3 Insulation Monitoring IR155-3204...................................................................... 32 3.4 The Hardware of SLAVE_C................................................................................. 33 3.4.1. Functional Overview................................................................................. 33 3.4.2. Block Diagram......................................................................................... 34 3.4.3. Printed Circuit Board and Connectors.......................................................... 34 Ref.: IR14417 A 09.10.2017 Page 3/76 Hardware Manual BMS Master 4 / 4.5 3.4.4. Functional Description............................................................................... 35 3.4.4.1 Power Supply........................................................................................ 35 3.4.4.2 Single Cell Interface.............................................................................. 35 3.4.4.3 Connecting less than 10 cells.................................................................. 36 3.4.4.4 Balancing Resistors................................................................................ 37 3.4.4.5 Serial RS 485 Interface and Error Signalling............................................. 37 3.4.4.6 Configuration Interface.......................................................................... 38 3.4.4.7 Sensor- and PTC-Interface..................................................................... 38 3.4.4.8 Signalling LEDs..................................................................................... 39 3.4.4.9 2nd Level Voltage Detection................................................................... 39 3.4.4.10 Fault Messaging Interface...................................................................... 39 3.4.4.11 Long Time Watchdog............................................................................ 40 3.4.4.12 Interface Isolation................................................................................ 40 3.4.5. Mechanical Dimensions............................................................................. 40 3.4.6. Power Supply and Consumption................................................................. 40 3.4.7. Environmental......................................................................................... 41 3.5 The Hardware of SLAVE_5................................................................................. 42 3.5.1. Functional Overview................................................................................. 43 3.5.2. Block Diagram......................................................................................... 43 3.5.3. Board Layout and Connections................................................................... 44 3.5.4. Functional Description............................................................................... 45 3.5.4.1 Supply................................................................................................. 45 3.5.4.2 Connecting Battery Cells........................................................................ 45 3.5.4.3 Connecting Less Than 10 Cells................................................................ 45 3.5.4.4 Sensor- and PTC-Interface..................................................................... 46 3.5.4.5 Balancing Resistors................................................................................ 46 3.5.4.6 Serial RS 485 Interface and ERROR Signalling........................................... 47 3.5.4.7 2nd-Level Overvoltage Detection............................................................. 48 3.5.4.8 Long Time Watchdog............................................................................. 48 3.5.4.9 Configuration - Addressing..................................................................... 48 3.5.5. Connecting External Balance Resistors........................................................ 48 3.5.6. Interface Isolation.................................................................................... 51 3.5.7. Mechanical Dimensions............................................................................. 51 3.5.8. Supply and Current Consumption............................................................... 51 3.5.9. Environmentals........................................................................................ 52 3.6 The Hardware of Slave 6................................................................................... 53 3.6.1. Functional Overview SL6_CON................................................................... 53 3.6.2. Functional Overview SL6_ANA................................................................... 53 3.6.3. Function Overview SL6_BAL...................................................................... 53 3.6.4. System Block diagram.............................................................................. 54 3.6.5. Connecting the Slave 6 CON Module to MASTER........................................... 55 3.6.6. Communication Connection to CON Module - ANA Module............................. 56 3.6.7. SL6_CON Module..................................................................................... 57 3.6.7.1 Layout and connectors........................................................................... 57 3.6.7.2 Mechanical Dimensions.......................................................................... 58 3.6.7.3 Supply and Current Consumption............................................................ 59 3.6.7.4 Environmentals..................................................................................... 59 3.6.8. SL6_ANA Module...................................................................................... 60 3.6.8.1 Board Layout and Connectors................................................................. 60 3.6.8.2 Connect less than 12 cells...................................................................... 62 3.6.8.3 Second Level Protection......................................................................... 64 3.6.8.4 Configuration SL6_ANA module.............................................................. 64 3.6.8.5 Mechanical Dimensions.......................................................................... 64 3.6.8.6 Supply and Current Consumption............................................................ 65 3.6.8.7 Environmental...................................................................................... 65 Ref.: IR14417 A 15.01.2018 Page 4/76 Hardware Manual BMS Master 4 / 4.5 3.6.9. Passive Cell Balance................................................................................. 65 3.6.9.1 Connection of external Balance Resistors.................................................. 66 4. Bringing the Slave C, Slave 5 into Service (only for Cell Voltages)............................. 69 5. Connectors-Accessory.......................................................................................... 71 6. Certificates......................................................................................................... 73 Ref.: IR14417 A 15.01.2018 Page 5/76 Hardware Manual BMS Master 4 / 4.5 1. INTRODUCTION Please read the present operation and safety remarks carefully. The instructions refer to all components of the BMS. The name BMS Master applies both for the BMS Master 4 and Master 4.5. There are differences they are separately described for Master 4 and Master 4.5. 1.1 APPLIANCE AND SAFETY INFORMATION FOR ACTIA I+ME BATTERY MANAGEMENT SYSTEM (BMS) COMPONENTS The BMS MASTER and Slave are two electronic components, which shall be used together in Lithium Ion batteries to control the battery system and charge status of each cell. 1.1.1. DETERMINED USE, CONNECTION AND INSTALLATION  Please always observe the corresponding DIN/VDE/EN/IEC/ANSI guidelines. Be informed with the specification and guidelines of the user and the respective manufacturer of the cells and accordingly of the battery.  Batteries are electrochemical components with very high short-circuit currents. Under all circumstances avoid short-circuits that endangers you, the whole construction and other operators.  All BMS-components and the provided equipment have to be used only for purposes described in the corresponding manuals. Incorrect use and operation of the components may damage the construction where they are installed.  Damaged components and such that have exceeded their lifetime have to be replaced immediately.  Only adequately qualified specialists, trained in handling of batteries and skilled in safety requirements for working with batteries may install the BMS.  After implementation of the BMS in the system a qualified specialist has to check the function and safety of the whole installation.  Due to the high voltage a sufficient insulation of the Slaves, their cabling and connected sensors is essential. 1.1.2. WARRANTY AND RESPONSIBILITY  Fundamentally our standard business conditions apply which are available to our client since the conclusion of the contract.  The ACTIA I+ME Battery Management System Components are complex parts intended for operation in powerful batteries. The components achieve a number of surveillance functions necessary for the management of lithium-ion batteries. These functions are described in provided manuals. The user may utilize these functions; however, the safety of the whole battery is in his responsibility.  We assume no liability and guarantee claims resulting from improper use of the system. The producer is on no account responsible for direct or subsequent claims that may happen from inappropriate or unprofessional use of BMS components.  Should be any of our clauses not be valid the German law applies.  We reserve our right to do further development of the system and modifications of this manual without previous announcement. Ref.: IR14417 A 09.10.2017 Page 6/76 Hardware Manual BMS Master 4 / 4.5 1.1.3. CHECKING, TRANSPORT AND STORAGE  Please check the transportation and component package for any damages and compare the content with the bill of delivery. In case of damages inform ACTIA I+ME GmbH immediately.  The Components may only be stored in rooms where they are safe from dust, humidity, splash water and dropping water and where the denoted storing temperatures are guaranteed. 1.1.4. REMARKS Before placing into operation please carefully read the following security instructions. The correct on site installation methods and the proper handling procedures for the Lithium Ion Cells, and the following usage and service procedures cannot be controlled by ACTIA I+ME. Therefore ACTIA I+ME will not accept any responsibility for damage or costs Electricity Hazard resulting from the incorrect installation or operation in any form. - Use insulated tools, wherever possible. Voltages may exceed some hundreds volts DC. - Always use qualified proper and, wherever applicable, polarity proof connectors. - Especially the wiring of the cells has to be done with extreme precaution. See chapter 3.4.4.2. Inspect the connections regularly. - Use only appropriate cables; especially for ampacity of power cables refer to DIN VDE 0276-1000 or corresponding national directives. - Cable dismantling, attaching end sleeves etc. must not be done near the electronic boards to avoid short circuits due to single wire strands. - Special care has to be taken when measuring or testing with equipment electrically referenced to mains protective earth (PE; e.g. mains supplied scopes); especially when master and slave units are connected and the master does not have an isolated power supply of its own. Remember that a master unit connected to a PC via RS232 interface is connected to PE anyway. The master unit’s reference GND- Battery Hazard level is the supply minus-pole (KL31), the slave unit’s reference GND- level is cell contact 7!! There will be a voltage difference of 21 V with ten cells at least, depending on the amount of single cells connected; with an 80-cell system e.g. the voltage difference between KL15 and Slave GND can be up to 300 VDC and more. - A short between both reference levels will destroy the battery, the electronics and the test equipment and may lead to fire or even explosion. - BMS MASTER and Slave boards are ESD (electrostatic discharge) sensitive devices. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Ref.: IR14417 A 15.01.2018 Page 7/76 Hardware Manual BMS Master 4 / 4.5 1.1.5. SYMBOLS UND WRITINGS Symbols and writings used in this manual: Safety references and Warnings are marked with this attention symbol in this manual. A signal word explains the subject. Special instructions are marked with this symbol. References to other chapters or additional information are marked with this symbol. >Text< Text or values mentioned in context with screen masks or similar are set between angle brackets. >Text< Text or values for input are bold in angle brackets. [OK] Command buttons in context with screen masks are put in square brackets. 1.1.6. GLOSSARY SoC State of charge DoD Depth of discharge KL15 Input of MASTER - Wake up „Plug-IN“ KL15S Input of MASTER - Wake up „Drive“ HV High Voltage Contactor (e.g. HV+ between Battery+ and Load) KV Contactor like HV (refers to KiloVac) RTC Real Time Clock VDR voltage dependent resistor, Varistor ADC Analog Digital Converter NTC negative temperature coefficient resistor, thermistors PTC positive temperature coefficient resistor, thermistors IMD Insulation Monitoring Device Ref.: IR14417 A 15.01.2018 Page 8/76 Hardware Manual BMS Master 4 / 4.5 2. GENERAL SYSTEM DESCRIPTION Loads, contactors, fuses and chargers may be connected in different ways. First of all the battery has to fit to the requirements of the load. Next the charger will influence the order of the components. 2.1 DIAGRAM „SYSTEM COMPONENTS“ „Drive“ mode with optional charger in the. load circuit Current Sensor Fuse Relay Load + VAC4645 350 A Drive + Battery + 270V -378V dc Relay Slave Precharge Slave Charger Slave X Ohm. Slave Master HV+ HV- - Slave Relay Load - Drive - Different circuits for both „PlugIn“ mode and „Drive“ mode Current Sensor Fuse Relay Load + VAC4645 350 A Drive + Battery + 270V -378V dc Relay Slave Precharge Slave Slave X Ohm Charger. Slave Master HV+ Relay Charge - HV- - Slave Load - Relay Drive - Every lithium ion battery system consists of several single cells, one master unit and at least one slave unit. Every slave unit can control 4 up to 12 single cells, and the master unit can control up to 32 slave units and up to 384 cells. For batteries with more than 12 cells at least two slave units are needed. Ref.: IR14417 A 15.01.2018 Page 9/76 Hardware Manual BMS Master 4 / 4.5 The master software and its parameters have to be adapted to the special battery configuration. In exceptional cases a slave module may be modified to control three or four cells. Controlling less than three cells is not possible. 2.2 SCHEME „MASTER“ Example schematic diagram: CANH CANL SW5-8 Current sensor Power Supply PlugIn Drive OFF VAC4645 Master_Slave_FAIL_IN Master_Slave_5V NET Master_Slave_BUS_A Master_Slave_BUS_B LC2 LC1 S1 S2 K1 K2 Master_Slave_GND Vbat GND 6 5 4 3 2 1 1 2 1 2 1 2 1 2 120Ω LiYCY- TP 2x2 0,25mm² CAN 2 CAN 1 CAN 3 K1 & K2 twisted S1 & S2 twisted 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 1 2 3 4 5 6 KL31 KL31 KL31 KL30 KL30 KL30 Plug In Drive EMSRET 7V S1 K1 KL31 S2 K2 CAN2H CAN2L Shield CAN1H CAN1L Shield CAN3H CAN3L Shield BUS_A 5V NET GND BUS_B FAIL_IN Shield Supply Current CAN Slave Comm. Master Outputs Inputs ICONst1 ICONst2 REL1A REL1B REL2A REL2B SS200 PWM0 AGND AGND AGND SWO1 SWO2 SWO3 SWO4 SWO5 SWO6 SWO7 SWO8 AOUT OIN1 OIN2 KL31 KL31 DIN1 DIN2 DIN3 DIN4 KL31 KL31 KL31 KL31 KL31 KL31 KL31 AIN1 AIN2 AIN3 AIN4 FIN1 FIN2 7V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Anabg out 2,2 kΩ 2,2 kΩ PWM out PT100 PT100 + + + + 1 2 SavOut Out1 Out2 Out3 Out4 Out1 = FAN - - - - PE Out2 = ? Ext. 12V 1 kΩ Out3 = Error Signal HV-Relay HV-Relay HV-Relay HV-Relay Security 8 7 6 5 4 3 2 1 Out4 = ? Charge ? minus precharge plus Switch OK- OK+ M+ M- KE E A+ A- IR 155-32-3201 2nd Level Error 2nd Level Error Signal Error Bat + L+ Bat - L- IMD The Master module covers the following functions:  Communicating with the connected slave modules  Providing and supervising time  Measuring of the total current drawn from the battery  Controlling the main power relay  Switching of climatic equipment, e.g. fans, Peltier elements or similar devices Ref.: IR14417 A 15.01.2018 Page 10/76 Hardware Manual BMS Master 4 / 4.5  Communicating with external hardware via a high speed CAN interface The Master module is supplied either by the controlled battery itself or it can be supplied by an additional system battery, e.g. in mixed 12V/42V-systems. System time and date are provided by a real time clock. The Master supply voltage must not exceed 28 VDC. 2.3 SCHEMATIC FOR SLAVE C, SLAVE 5 Example schematic diagram based on Slave C modules; for the Slave 5 modules the picture is valid analogously. The Slave C, Slave 5 is on Master Connector CN106 (Slave Comm) wired connected. VBAT+ VBAT- 12 11 10 9 8 7 6 5 4 3 2 1 12 11 10 9 8 7 6 5 4 3 2 1 12 11 10 9 8 7 6 5 4 3 2 1 Cell connector Cell connector Cell connector temperature temperature temperature control control control NTC2- 1 NTC NTC2- 1 NTC NTC2- 1 NTC 2 2 2 SLAVE n NTC1- 3 NTC SLAVE n-1 NTC1- 3 NTC SLAVE 1 NTC1- 3 NTC 4 4 4 PTC+ 5 PTC+ 5 PTC+ 5 6 6 6 Failn 2 Failn 1 GND 5V BUS B BUS A SHIELD SHIELD GND 5V BUS B BUS A Failn 2 Failn 1 GND 5V BUS B BUS A SHIELD SHIELD GND 5V BUS B BUS A Failn 2 Failn 1 GND 5V BUS B BUS A SHIELD SHIELD GND 5V BUS B BUS A 12 11 10 9 8 7 6 5 4 3 2 1 12 11 10 9 8 7 6 5 4 3 2 1 12 11 10 9 8 7 6 5 4 3 2 1 e.g. LiYCY- TP 3x2 0,25mm² Bus A & Bus B Twisted 4,7 kΩ … 5,1 kΩ 5V & GND twisted Master_SlaveCom.5 Master_SlaveCom.3 Master_SlaveCom.2 Master_SlaveCom.4 Master_SlaveCom.1 The slave module can be connected to 5 up to 10 cells and covers the following functions:  Communicating with the Master module  Measuring of the single cell voltages  Compensation of different cell charge states  Controlling of the mechanical integrity of one or more batteries  Measuring of temperatures  Signalling overvoltage and over temperature conditions Ref.: IR14417 A 15.01.2018 Page 11/76 Hardware Manual BMS Master 4 / 4.5 The slave module is internally supplied by three cells of the controlled battery, in 10 cell- systems the cells number 6 to 8 (counting from minus pole to plus pole) are used. If less cells are used, the slave module is supplied by the cells connected to the according cell contacts. 2.4 SCHEMATIC FOR SLAVE 6 The Slave 6 is on the Master connector CN104 (Current) together with the Current sensor connected. The Second Level Security is on connector CN106 (Slave Comm) wired. Master_Slave Com.5 Master_Slave Com.4 Master_Slave Com.1 Master_CurrentMeas.8 VBAT+ Master_CurrentMeas.7 Master_CurrentMeas.4 Master_CurrentMeas.1 CAN L 10 FAIL B 11 SHIELD 12 VNet 1 7 Term H 2 Term L 8 CAN H 3 CAN L 9 CAN H 4 FAIL A 5 FAIL_ 6 1 8 2 9 3 10 4 11 5 12 6 13 7 14 1 8 2 9 3 10 4 11 5 12 6 13 7 14 Cell connector Cell connector GND Balance temperature Balance temperature Master connector Connector Connector connector connector 1 1 1 1 NTC 1 NTC 1 6 6 2 NTC 2 NTC NTC 2 NTC 2 SLAVE 6 7 3 NTC 7 3 NTC CON Modul SLAVE 6 NTC 3 8 SLAVE 6 NTC 3 8 4 NTC 4 NTC ANA Modul NTC 4 9 ANA Modul NTC 4 9 5 NTC 5 NTC 24 NTC 5 24 NTC 5 10 10 Connector Top Connector Bottom Connector Top Connector Bottom Connector Top SI-T SI+T EN-T EN+T SHIELD SHIELD T2 T1 SI-B SI+B EN-B EN+B SHIELD SHIELD B2 B1 SI-B SI+B EN-B EN+B SHIELD SHIELD B2 B1 SI-T SI+T EN-T EN+T SHIELD SHIELD T2 T1 SI-T SI+T EN-T EN+T SHIELD SHIELD T2 T1 8 4 7 3 6 2 5 1 8 4 7 3 6 2 5 1 8 4 7 3 6 2 5 1 8 4 7 3 6 2 5 1 8 4 7 3 6 2 5 1 e.g. LiYCY- TP 3x2 0,25mm² Bus A & Bus B Twisted 5V & GND twisted The slave module can be connected to 4 up to 12 cells and covers the following functions:  Communicating with the Master module  Measuring of the single cell voltages  Compensation of different cell charge states  Measuring of temperatures  Over and under voltage detection, (second level security)  Over and under temperature detection, (second level security)  Error events, notify the MASTER to turn of the relay  Self-monitoring (cell voltage open wire check, balance check) The ANA module is internally supplied from the connected cells. The CON module is supplied from the MASTER. Ref.: IR14417 A 15.01.2018 Page 12/76 Hardware Manual BMS Master 4 / 4.5 3. HARDWARE 3.1 THE HARDWARE OF THE MASTER 3.1.1. BLOCK DIAGRAM This diagram shows the basic components of the „MASTER“ 2 x 16 kB Ext. Flash ext. USB Port EEROM SRAM 2 x 4 MB optional SDFlash Intern Auxiliary Comm Ethernet Microcontroller Slave Bus 512k Flash handshake RS485 Comm. 1 x CAN incl. Emerg 1 x UART Fail 1 x Ethernet VAC Current sensor Interface Opt. for other sensor types CAN Transceiver 3 Main CAN Mux Microcontroller CAN Transceiver 2 CAN 256kFlash Transceiver 1 2 x CAN 2 x UART IO Interface RS 232 Interface 8 x Out HiSide 2 x Relay OUT 6 x DigIN 1 x PWMOUT RTC I²C 4 x AnalogIN Power Supply 1 x AnalogOUT Voltage Limiter 2 x ConstCur RTC Wake UP KL15 Wake UP CAN Wake UP The BMS-MASTER is equipped with two microcontrollers: the main processor XC167CI (by Infineon) and the auxiliary processor AT91SAM7 (by Atmel). Both processors communicate via internal interface or CAN-Bus. Ref.: IR14417 A 15.01.2018 Page 13/76 Hardware Manual BMS Master 4 / 4.5 3.1.2. ENCLOSURE VIEWS Front Rear Ref.: IR14417 A 15.01.2018 Page 14/76 Hardware Manual BMS Master 4 / 4.5 3.1.3. INTERFACES 3.1.3.1 SUPPLY, CONNECTOR CN101 The BMS MASTER is supplied via connector KL30 (+) and KL31 (–) with typ. 12 VDC or 24 VDC, e.g. a vehicle’s board net; the connections are polarity proof and protected against overvoltage transients with a varistors, suppressor diodes and against overload with two 5A Thermo-Fuses. Connector pin assignment / View on the pins: 1 KL30 4 KL15 7 KL31 1 4 7 2 KL30 5 KL15S 8 KL31 2 5 8 3 KL30 6 EMSRET 9 KL31 3 6 9 Nomenclature: KL30 Plus, 9 … 28 VDC; Power requirement depends on output loads, maximum 11.5 A KL31 Minus, Ground, reference level – for all loads connected to outputs SWOx (relays, valves, motors etc.) Wake up Signal to switch on the device, +9 … 28 VDC; push-button function - the „Plug-IN“ device may switch off itself, e.g. by a CAN command (KL15) active @ > 8 V, input resistance 32 kΩ Wake up Signal to switch on the device, +9 … 28 VDC; switch function - the device „Drive“; cannot switch off itself (KL15S) active @ > 8 V, input resistance 32 kΩ EMSRET Supply of the Relay Outputs SWO5 … 8; has to be connected to KL30 either directly or via a contact e.g. operated with relay output REL1A/B Without connection to KL30 the outputs SWO5 … 8 are out of function Remark: To switch ON or OFF the BMS Master use only the Kl15 or Kl15S signal. After switch OFF with Kl15 / Kl15S the electronic control unit is running up to 10 seconds. In this time are important data stored in non volatile memory. Should the BMS complete disconnected from the power supply, at first the Kl15/Kl15S is switched OFF and then wait 10 seconds. After that the clamp 30 can disconnected from the BMS Master. To switch OFF with clamp 30 or not wait 10 seconds can to cause inconsistent data at next session (wrong State of charge). Ref.: IR14417 A 15.01.2018 Page 15/76 Hardware Manual BMS Master 4 / 4.5 3.1.3.2 OUTPUTS, CONNECTOR CN102 1 4 7 10 13 16 19 The device has 12 outputs with different characteristics. 2 5 8 11 14 17 20 Connector pin assignment / View on the pins: 3 6 9 12 15 18 21 1 REL1A 4 REL1B 7 REL2A 10 REL2B 13 KL31 16 PWMO 19 AOUT 2 SWO1 5 KL31 8 SWO3 11 KL31 14 SWO5 17 KL31 20 SWO7 3 SWO2 6 KL31 9 SWO4 12 KL31 15 SWO6 18 KL31 21 SWO8 Nomenclature: KL31 Minus, Ground, reference level – for all loads connected to outputs SWOx (relays, valves, motors etc.) SWO1…4 Switch outputs; if activated the voltage level corresponds to KL30 level; if not activated the output level is 0 … 7 V depending on load resistance, due to a test current of some micro amps to detect open loads in OFF-state. The outputs may be loaded with up to 2.5 A each (peak 4 A for 1 second). Total of outputs SWO1…4 must not exceed 5 A. SWO5…8 Switch outputs with same characteristic as outputs SWO1…4. Outputs SWO5…8 will be activated only, when EMSRET is connected to KL30 in any way. The outputs may be loaded with up to 2.5 A each (peak 4 A for 1 second). Total of outputs SWO1…4 must not exceed 5 A. REL1A-B potential free relay contact, can carry 30V / 2A resistive and inductive. The relay will be cut off, when - input DIN1 is deactivated or - a FAIL-signal from any of the cell monitoring slave moduls is pending The relay can/should be included together with the emergency stop switch into a security chain. REL2A-B potential free relay contact, can carry 30V / 2A resistive and inductive PWMO pulse width modulated output; output voltage UPWM (KL30-level – 3.5V, max 10V), max.50 mA, min. pulse width tmin 50 µs AOUT analog output UAOUT 0… (KL30-level – 3.5V, max 10V), max.50 mA 3.1.3.3 INPUTS, CONNECTOR CN103 1 4 7 10 13 16 19 2 5 8 11 14 17 20 The device has 12 inputs with different characteristics. 3 6 9 12 15 18 21 Ref.: IR14417 A 15.01.2018 Page 16/76 Hardware Manual BMS Master 4 / 4.5 Maximum input voltage like KL30. Connector pin assignment / View on the pins: 1 OIN1 4 OIN2 7 7V / 10 SS200 13 FIN1 16 FIN2 19 KL31 12V 2 DIN1 5 DIN2 8 DIN3 11 DIN4 14 IConst1 17 IConst2 20 KL31 3 AIN1 6 AGND 9 AIN2 12 AGND 15 AIN3 18 AGND 21 AIN4 Nomenclature: SS200 Sensor supply output; KL30 level, max. current 100 mA, (fuse 350 mA) OIN1…2 Optical isolated current sink inputs; activated at voltage > 5VDC, internal limited current 4.5 mA DIN1…2 Digital current sink inputs; - activated by current > 3 mA, - deactivated by current < 2.5 mA, internal limited current 4.5 mA An open or deactivated input DIN1 cuts off relay output REL1 ! DIN3…4 Digital voltage inputs; - activated by voltage with more than half level of KL30 +1 V - deactivated by voltage with less than half level of KL30 –1 V Input resistance 20 kΩ + + FIN1…2 Frequency measurement inputs - activated by voltage higher than 25% level of KL30 - deactivated by voltage lower than 15% level of KL30 Hysteresis 0,2 V, input resistance 44 kΩ The FIN inputs should be connected to sources switching between high and low, they should not be connected to sources switching between low and open. fmax 20 kHz AIN1…2 Analogue input, range 0…10 V, Input resistance 44 kΩ AIN3…4 Analogue input, range 0…5 V, Input resistance ≥ 1 MΩ AGND Analogue Ground, reference level for AIN1…4 IConst1…2 Constant current outputs for PT100 sensors, 22 mA - active only while measuring – PT100 sensors have be connected to AIN3, AGND and IConst1 - or - AIN4, AGND and IConst1 -2. KL31 Minus, Ground 7V Master 4: 7 Volt sensor supply, max. 350 mA 12V Master 4.5: 12 Volt sensor supply, max. 350 mA Ref.: IR14417 A 15.01.2018 Page 17/76 Hardware Manual BMS Master 4 / 4.5 3.1.3.4 CURRENT MEASUREMENT AND CAN2, CONNECTOR CN104 Connector CN104 can be used to connect Current sensor and Slave 6. Following current sensors are possible: - Shunt based sensor with isolated CAN interface from ACTIA I+ME GmbH - Current compensation sensor from Vacuumschmelze Other sensors with analog output may be used only with proper replacement of some resistor elements; proper software provided. Connector pin assignment / View on the pins: 1 4 7 1 7V / 12V 4 KL31 7 CAN2H 2 5 8 2 S1 / OVC 5 S2 / AGNC 8 CAN2L 3 6 9 3 K1 / SIG 6 K2 / REF2V5 9 Shield Nomenclature: For sensors with Shunt and CAN interface (BAT-S1000 1U, IVT-B) 7V Master 4: Sensor supply +7 VDC, 350 mA max. 12V Master 4.5: Sensor supply +12 VDC, 350 mA max. KL31 Sensor supply Minus, Ground CAN2H, CAN bus connections CAN2L, Shield Only for Sensors VAC_T60404_M4645-X201 Details see Document IR11758A_BMS_HW_Descr_VAC_PCB S1 / S2 High Current Sense K1 / K2 Compensation Current Do not connect the sensor lines LC1 und LC2 for low current OVC Only Master 4: Overcurrent signal, active high activated by voltage > 2.5 VDC, input resistance 1.1 kΩ Only Master 4: Only with proper board assembly (in connection with proper software, optional) for sensors with analog output 2,5 V ± 2 V (e.g. LEM HAB) AGNC Reference level Sensor Ground SIG Input Analog-Signal REF2V5 Input or output reference voltage 2,5V Ref.: IR14417 A 15.01.2018 Page 18/76 Hardware Manual BMS Master 4 / 4.5 3.1.3.5 CAN INTERFACE 1 & 3, CONNECTOR CN105 For the communication with other devices CAN interfaces are integrated according to CAN specification V2.0B. Each CAN node is able to transmit and receive standard frames with either 11-bit- or 29-bit-identifiers. Interface CAN 1 is operated by the XC167 processor. Interface CAN 3 is operated by the AT91 processor. Connector pin assignment / View on the pins: 1 4 1 CAN1H 4 CAN3H 2 5 2 CAN1L 5 CAN3L 3 6 3 Shield 6 Shield Nomenclature: CAN1H, Controller Area Network channel 1 CAN1L For communication with external devices, e.g. host computer. CAN3H, Controller Area Network channel 3 CAN3L for communication with battery control specific units Shield Shield connection The use of shielded and twisted pair cable is strongly recommended. The termination of CAN-Bus № 1 and № 3 has to be done externally. 3.1.3.6 SLAVE MODULE COMMUNICATION, CONNECTOR CN106 Slave C, Slave 5 module communication is done via an RS485 interface. The interface is not optical isolated, optical isolation is implemented on the slave modules; communication baud rate is 19200 Bd. Single cell voltages, temperature values and commands for bypass resistors are communicated. Connector pin assignment / View on the pins: 1 4 1 BUSA 4 BUSB 2 5 2 5VNET 5 FAIL 3 GND 6 Shield 3 6 Nomenclature: 5VNET Slave communication supply 5 V +40/-5 %, 350 mA max. GND Ground BUSA, RS485 bus lines Ref.: IR14417 A 15.01.2018 Page 19/76 Hardware Manual BMS Master 4 / 4.5 BUSB Shield cable shield FAIL Input for failure signals from any slave module caused by over temperature on any slave module or by overvoltage of > 4.4V at any single cell for longer than 1 second; Activated by voltage < 2.4 V, input resistance 22 kΩ; all FAIL outputs of all slave modules are connected together, a 5V/1mA- current source must be realized with a resistor of 4.7 kΩ … 5.1 kΩ connected to 5VNET on the last slave module in the chain. The use of shielded and twisted pair cable is strongly recommended. 3.1.3.7 RS232-INTERFACE The RS232-interface for software development, firmware download and diagnos

Use Quizgecko on...
Browser
Browser