Indefinite Integration Formulas Handbook PDF

Document Details

NourishingRoseQuartz

Uploaded by NourishingRoseQuartz

null

Tags

integration formulas calculus integration methods mathematics

Summary

This document provides a collection of indefinite integration formulas and methods. It covers various techniques, including substitution, integration by parts, and partial fraction decomposition, along with examples and explanations.

Full Transcript

ULTIMATE FORMULA HANDBOOK MATHONGO Basic Formulas  cosec 2 xdx   cot x  dx  x x n  sec x tan xdx  sec x n 1  x dx  n  1 ( n   1)  x  cosec x cot xdx   cosec x dx  sec  1 x 2 x 1 a x dx  ax ,a  0 log e a  e x dx  e x 1 dx  log | x | x   cos dx  sin x 1 1 x 2   sec 2 xd...

ULTIMATE FORMULA HANDBOOK MATHONGO Basic Formulas  cosec 2 xdx   cot x  dx  x x n  sec x tan xdx  sec x n 1  x dx  n  1 ( n   1)  x  cosec x cot xdx   cosec x dx  sec  1 x 2 x 1 a x dx  ax ,a  0 log e a  e x dx  e x 1 dx  log | x | x   cos dx  sin x 1 1 x 2   sec 2 xdx  tan x 1 1 x 2  tan x d x  log sec x  c  cot x dx  lo g sin x  c dx  sin  1 x  sin xdx   cos x  sec x dx  log  1 dx  tan  1 x x  sec x  tan x  c  log tan     c 2 4  cos ec x dx  log cos ec x  cot x  c  tan x 2  c Method of Substitution Type 1  Type 3 Type 4 f ´( x) dx  log f ( x)  c f ( x) Type 2 n   f ( x ) f ´( x ) dx  f ( x ) n 1  c n 1  f  g ( x )  g ´( x ) dx. In this type, we substituteg (x) = t, then, Hence integral reduces to  f (t) dt P( x).(ax  b) n or Working Rule : P ( x) (ax  b)n where P(x) is a polynomial in x and n is a positive rational number. Put z = ax + b Type 5 sin f(x) or cos f(x) then put z = f(x) Type 6 :  s in m x c o s n x d x Working Rule : (i) If power of sin x is odd positive integer, put z = cos x (ii) If power of cos x is odd positive integer, put z = sin x (iii) If powers of both sin x and cos x are odd positive integers, put z = sin x or z = cos x. (iv) If powers of neither cos x nor sin x is odd positive integer, see the sum of powers of sin x and cos x. (a) If the sum of powers is even negative integer, put z = tan x. (b) If the sum of powers (m + n) is even positive integer and m, n are integers, express the integrand as the algebraic sum of sines and cosines of multiple angles. INDEFINITE INTEGRATION ULTIMATE FORMULA HANDBOOK m x sec n xdx or m x sec n xdx : similar can be derived for the other pair Type 7 :  tan.  tan For MATHONGO  cot m xco sec n xdx (i) If power of secx is even positive integer, put z = tanx. (ii) If power of secx is not even positive integer, then see the power of tanx. (a) If power of tanx is odd positive integer, put z = secx. (b) If power of tanx is even positive integer, then put sec2x – 1 in place of tan2x and then substitute z = tanx. (iii) If power of tanx is zero and power of secx is odd positive integer greater than 1, then method of integration by parts is used. SOME STANDARD SUBSTITUTIONS 1 1. 2. a 2  x 2 or 1  a2  x2 2 a  x 1 or  2 a2  x2 x = a sin  or a cos  x = a tan  or a cot  6. x a  x or 7.  x  a   or b  x  4. 2 or x2  a 2 a  x a  x or x  a 2 x = a sec  or a cosec  x  a x  b 8. a x a  x x = a cos 2 x  a  b  x  x = a cos2  + b sin2  1 3. 1 x x = a tan2  or x = a cot2  x or x  a x  b x = a sec2  – b tan2  5. x a  x or a  x x = a sin2  or x = a cos2  x 1 9.  a x  b x x – a = t2 or x – b = t2 SOME STANDARD FORMULAS DERIVED FROM SUBSTITUTION Set-I Set-II 1.  x2 3.  x2 1.  3.  dx  a dx  a  2 dx 2 a x 2 dx 2 1 x  a log  c 2a x  a  2 x  a 2 2.  a2 2.  4.  dx  x  2 1 a  x log  c 2a a  x 1 x  c tan  1 a a  sin  1 x c a  log x  x2  a 2  c dx 2 x  a 2 dx x x2  a2 INDEFINITE INTEGRATION  log x   x2  a 2  c 1 x sec  1 c a a ULTIMATE FORMULA HANDBOOK Set-III 1. 2. 3. MATHONGO a2 x sin  1  c 2 2  a 2  x 2 dx  x 2 a2  x2   x 2  a 2 dx  x 2 x2  a2   x 2  a 2 dx  x 2 x 2  a 2 dx  a2 lo g x  2 x 2 x2  a2  c x2  a2  a2 lo g x  2 x2  a2  c INTEGRATION BY PARTS Integral of product of two functions = (1st function) × (Integral of 2nd function) – Integral of {(differential of 1st function) × Integral of 2nd function} d  f ( x).  g( x) dx  dx In symbols :  f ( x). g ( x) dx  f ( x).  g ( x) dx     dx  or  u.vdx  u  vdx –  u´( vdx)dx where I stands for Inverse circular function L stands for Logarthmic function A stands for Algebraic function T stands for Trigonometrical functions and E stands for Exponential function (ii) If both the functions are trigonometrical, take that function as v whose integral is simpler. (iii) If both the functions are algerbraic take that functions as u whose d c is simpler. Standard Forms derived using By Parts x  f ( x )  f ´  x   dx  e x f ( x )  c (i) e (iii)  [ xf ´( x)  f ( x)]dx  x f ( x )  c (iv) (v) e e ax ax sin  bx  c  dx = eax cos  bx  c  dx = eax (ii) mx e mf (x)  f ´ x  dx  emx f (x)  c b  sin  bx  c  tan1  a  c a2  b2 b  cos  bx  c  tan1  a  c a2  b2 INDEFINITE INTEGRATION ULTIMATE FORMULA HANDBOOK MATHONGO METHOD : INTEGRATION BY PARTIAL FRACTION We have divided this method into 2 types, depending upon the denominator. 1. If denominator has non repeated factors 2. If denominator has repeating factors Type 1 : For non-Repeating roots When denominator can be expressed as non repeating factors i.e. D(x) = (x – 1) (x – 2)... (for linear factors) 2 = (ax + bx + c) (px + qx + r)... (for quadratic factors) Type 2 When repeating factors are present i.e. when denominator is of the form k1 D(x) = (x – ) (x – )k2... {for linear factor} = (ax2 + bx + c)k1 (px2 + qx + c)k {for quadratic (1) If function is linear. N( x) i.e. (2) 2 ( x  a) ( x  b) ( x  c) B1 C3 A B2 C1 C2    = ( x  a)  ( x  b)  2 2 ( x  c) ( x  c) ( x  b) ( x  c)3 3 If function has quadratic factors N( x) i.e of the form 2 (ax  bx  c) ( px2  qx  c)2 = Ax  B 2 ax  bx  c  P1 x  Q1  px 2  qx  r  P2 x  Q2   px 2  qx  r 2  INTEGRATION OF RATIONAL & IRRATIONAL FUNCTIONS Integral of the form  ax dx 2  bx  c ,  dx 2 and ax  bx  c  ax 2  bx  c dx For evaluating such integral we make the coefficients of x2 in ax2 + bx + c as one. Complete the square by adding and subtracting the square of half of the coefficient of x to get the form 2  c b2   b     a  x     a 4 a2   2a     Integrals of the form  ax px  q 2  bx  c dx,  px  q ax 2  bx  c dx and ( px  q) ax 2  bx  c dx For evaluating such integrals we choose suitable constants A and B such that d  px  q  A  ( ax 2  bx  c)   B  dx  INDEFINITE INTEGRATION ULTIMATE FORMULA HANDBOOK px 2  qx  r  Integrals of the Form : MATHONGO ax 2  bx  c dx For evaluating such integrals we choose suitable constants, A, B and C such that  d  (ax2  bx  c   C px2 + qx + r = A (ax2 + bx + c) + B  dx   Integrals of the form : x x2  1 4  kx 2  1 dx For evaluating such integrals, divide the numerator and denominator by x2. Complete the square of 2 2 1 1   denominator to get the form  x    a or  x    a x x   Then the integral can be evaluated by using the method of substitution. Special Integration Type I Type II Type III x x x x2  q 4 Divide numerator & denominator by x2  px2  q dx 4  px2  q x2  r 4 write this in form  px2  q dx 1 2 q  x 2   q  x2   4 dx  a  b cos x or dx x  px  q   express x2 + r as 2 x2 + r = l x  q + m where l + m = 1 &  a  b sin x or q l  m  r dx  a  b cos x  c sin x 2 tan Working Rule :  2 Integration of Trigonometric Functions Type I q Put sin x  x 2 x 2 cos x  2 x 1  tan 2 1  tan 2 1  tan 2 x 2 whichever is needed and then put z = tan x 2 and INDEFINITE INTEGRATION x 2  q  ULTIMATE FORMULA HANDBOOK  Type II MATHONGO sin x dx, a sin x  b co s x  cos x d x , or a sin x  b co s x  p sin x  q co s x dx c s in x  b co s x Step – 1 : Put Numerator = A (dinominator) + B (derivative of denominator.) where a  0, b  0 Step – 2 : Then equate the coefficients of sinx and cosx to find A and B. a sin x  b cos x  c  p sin x  q cos x  r Type 3. (i) Write Numerator =  (Diff. of denominator) + µ (Denominator) + v i.e. a sin x + b cos x + c =  (p cosx – q sinx) + µ (psin x + q cosx + r) + v Type 4.  a sin 1 2 2 x  b cos x dx. 1  a  b sin 2 x dx , 1  a  b cos 2 x dx, 1   a sin x  b cos x (i) Divide numerator and denominator both by cos2x (ii) Replace sec2 x, if any, in denominator by 1 + tan2 x 2 dx,  a  b sin 1 2 x  cos2 x dx (iii) Put tan x = t so that sec2 x dx = dt This substitution reduces the integral in the form Integrals of the form :  at 1 2  bt  c dt dx P Q where P and Q are linear or quadratic expression in x 1. Q is linear and P is linear or quadratic., For evaluating such integrals, put Q = t2 2. Q is quadratic and P is linear., For evaluating such integrals, put P = 3. Both P and Q are pure quadratic., For evaluating such integrals, put x  1 t 1. t Integration of Irrational Functions Types of functions (intergrand) Approach 1.   ax  b  a / n  f  x,    a, b, c, d, , n  R     cx  d   Substitute : 2. f x,  ax  b  a/n ,  ax  b /m  ax  b  tn cx  d ax + b = tp, where p is L.C.M. of m and n. INDEFINITE INTEGRATION ULTIMATE FORMULA HANDBOOK 3.  f  x    a 2  x2 MATHONGO n   Workrule : x  m + p  N, m + p > 1 Workrule : a + bx = tx a2  x2  t 1 4. x m  a  bx  p 1 5. 6. m L1  x  n L 2  x  (i) If n > m; L1 ( x) t L 2 ( x) (ii) If n < m; L 2 ( x) t L1 ( x) (i) If p  I, substitute x = ts where s is L.C.M. of denominator of m & n. (ii) If xm(a + bxn)pdx m 1 is an Integer, substitute a + bxn = ts n is the denominator of fraction p. (iii) m 1  p substitute ax–n + b = ts n s is denominator of rational number p. If INDEFINITE INTEGRATION

Use Quizgecko on...
Browser
Browser