HE1004 Oct Quiz (2021) PDF

Summary

This is a mathematics quiz from October 2021, containing multiple choice questions on topics such as irrational numbers, summations, functions, and calculus. The quiz covers various mathematical concepts and is likely part of an undergraduate mathematics course.

Full Transcript

(a) Each question is worth 1 point. Total Marks: 20 points (b) Key in your answers in MS Form. 1. Which of the following is an irrational number? a. βˆ’ 0.58 b. 0.66666… c. √16 d. e βˆ‘100 𝑖𝑖=1 𝑖𝑖 2. βˆ‘3𝑗𝑗=1 βˆ‘3 i...

(a) Each question is worth 1 point. Total Marks: 20 points (b) Key in your answers in MS Form. 1. Which of the following is an irrational number? a. βˆ’ 0.58 b. 0.66666… c. √16 d. e βˆ‘100 𝑖𝑖=1 𝑖𝑖 2. βˆ‘3𝑗𝑗=1 βˆ‘3 is equal to_____. 𝑖𝑖=0(π‘–π‘–βˆ’1) a. 2525 b. 5050 c. 7575 d. 10100 3. Which of the following is correct? 2 3 a. √π‘₯π‘₯1 π‘₯π‘₯ 2 = π‘₯π‘₯ 3 b. (π‘₯π‘₯ 5 π‘₯π‘₯ 3 )2 = π‘₯π‘₯ 30 c. (π‘₯π‘₯ π‘Žπ‘Ž + π‘₯π‘₯ 𝑏𝑏 )2 = π‘₯π‘₯ 2π‘Žπ‘Ž + 2π‘₯π‘₯ π‘Žπ‘Ž+𝑏𝑏 + π‘₯π‘₯ 2𝑏𝑏 1 d. (𝑒𝑒 4 )4 = 1 4. Suppose the sets 𝑹𝑹 = {π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛}, 𝑸𝑸 = {π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž rational numbers}, and 𝑡𝑡 = {π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž natural numbers}. Which of the following relationship descriptions is correct? a. 𝑸𝑸 is a sufficient condition for 𝑡𝑡. b. 𝑹𝑹 is a necessary condition for 𝑡𝑡. c. 𝑹𝑹 is a sufficient condition for 𝑸𝑸. d. 𝑸𝑸 is neither a sufficient nor necessary condition for 𝑹𝑹. 5. Suppose the demand function is 𝑄𝑄 = 8 βˆ’ 𝑃𝑃 and the supply function is 𝑄𝑄 = 𝑃𝑃 βˆ’ 4 What is the equilibrium quantity? a. 2 b. 4 c. 6 d. 8 1 6. The supply function for a good is given by: 𝑄𝑄 = 2𝑃𝑃 βˆ’ 10. To encourage production, the government subsidies the producers $2 per unit. What is the new supply function? a. 𝑄𝑄 = 2𝑃𝑃 βˆ’ 6 b. 𝑄𝑄 = 2𝑃𝑃 βˆ’ 5 c. 𝑄𝑄 = 2𝑃𝑃 βˆ’ 2 d. 𝑄𝑄 = 2𝑃𝑃 βˆ’ 1 7. If the production function is 𝑄𝑄 = 8√𝐿𝐿 βˆ’ 𝐿𝐿 , where 𝑄𝑄 denotes output and 𝐿𝐿 denotes the size of the workforce, find out the marginal product of labor (𝑀𝑀𝑀𝑀𝐿𝐿 ) when 𝐿𝐿 = 4. a. 5 b. 4 c. 3 d. 1 8. On 2 August 2021, Temasek launched an offering of 50-year Singapore bonds with a yield 2.8% per annum. If we invest $10,000 in this bond now, how much will we get in total by the end of year 50? a. 10, 000 Γ— (1 + 0.028 Γ— 50) b. 10,28050 c. (10,000 Γ— 1.028)50 d. 10,000 Γ— (1 + 0.028)50 9. If Country A’s population is decreasing by 3.2% annually, then how many years will it take for the population to reach below 5 million from 5.7 million? a. About 4 years b. About 5 years c. About 6 years d. About 7 years 10. Suppose 𝑓𝑓(π‘₯π‘₯) = 3π‘₯π‘₯ 2 and 𝑔𝑔(π‘₯π‘₯) = ln (3π‘₯π‘₯ + 1). What is (𝑓𝑓 ∘ 𝑔𝑔)(π‘₯π‘₯)? a. 3π‘₯π‘₯ 2 ln(3π‘₯π‘₯ + 1) b. 3[ln(3π‘₯π‘₯ + 1)]2 c. ln (9π‘₯π‘₯ 2 + 1) d. 9 ln(3π‘₯π‘₯ + 1) 2 11. Consider a closed economy with no government intervention. Households can then spend the money in one of the two ways. Income can be used for the consumption of goods or can be put into savings, i.e., 𝐢𝐢 = 𝐢𝐢(π‘Œπ‘Œ) and 𝑆𝑆 = 𝑆𝑆(π‘Œπ‘Œ). Suppose 𝐢𝐢 = 1500 + 0.80π‘Œπ‘Œ. What of the following statements is incorrect? a. The saving function is 𝑆𝑆 = βˆ’1500 + 0.2π‘Œπ‘Œ. b. The income multiplier is 5. c. The marginal propensity to save (MPS) is 0.2. d. The marginal propensity to consume (MPC) is 0.8. e. All the above are correct. 12. Suppose the profit function is πœ‹πœ‹(𝑄𝑄) = βˆ’4𝑄𝑄 2 + 400𝑄𝑄 βˆ’ 50. What is the optimal 𝑄𝑄, production level, such that the firm can maximize its profit? a. 0 b. 50 c. 100 d. ∞ e. None of the above 13. Suppose 𝑓𝑓(π‘₯π‘₯) = 𝑒𝑒 3π‘₯π‘₯ + 2π‘₯π‘₯. What is the slope of the inverse function 𝑓𝑓 βˆ’1 (π‘₯π‘₯) evaluated at π‘₯π‘₯ = 0? a. 0 b. 0.2 c. 1 d. 5 e. None of the above 2 14. Calculate the third derivative of 𝑒𝑒 π‘₯π‘₯ evaluated at π‘₯π‘₯ = 1. a. 6e b. 12e c. 16e d. 20e e. None of the above 3 15. Which of the following is incorrect? a. lim (3π‘₯π‘₯ + 2) = 8 π‘₯π‘₯β†’2 b. lim π‘₯π‘₯ π‘₯π‘₯ π‘₯π‘₯ βˆšβ€¦ = 5 π‘₯π‘₯β†’5 c. lim π‘₯π‘₯ π‘₯π‘₯ π‘₯π‘₯βˆšβ€¦ = 0 π‘₯π‘₯β†’0 3π‘₯π‘₯ d. lim =0 π‘₯π‘₯β†’βˆž 4π‘₯π‘₯ e. All the above are correct. 16. Which of the following is/are incorrect? π‘₯π‘₯π‘₯π‘₯ a. ln 𝑧𝑧 = ln(π‘₯π‘₯) + ln (𝑦𝑦) βˆ’ ln (𝑧𝑧) b. ln π‘₯π‘₯𝑒𝑒 ln 𝑦𝑦 = ln(π‘₯π‘₯) + ln (𝑦𝑦) c. ln (π‘₯π‘₯ 2 ) = 2π‘₯π‘₯ d 𝑒𝑒 2 ln(π‘₯π‘₯+𝑦𝑦) = π‘₯π‘₯ 2 + 2π‘₯π‘₯π‘₯π‘₯ + 𝑦𝑦 2 e. (c) and (d) π‘₯π‘₯ 2 βˆ’4 17. Calculate lim π‘₯π‘₯β†’2 π‘₯π‘₯βˆ’2 a. 0 b. 2 c. 4 d. ∞ e. None of the above 18. Which of the following is incorrect? 𝑑𝑑𝑑𝑑 2π‘₯π‘₯+2𝑦𝑦 a. 𝑦𝑦 = π‘₯π‘₯ 2 + 2π‘₯π‘₯π‘₯π‘₯ implies 𝑑𝑑𝑑𝑑 = 1βˆ’2π‘₯π‘₯ 𝑑𝑑𝑑𝑑 2π‘₯π‘₯ 2 b. 𝑦𝑦 = π‘₯π‘₯ 2 ln(2π‘₯π‘₯ + 1) implies 𝑑𝑑𝑑𝑑 = 2π‘₯π‘₯ ln(2π‘₯π‘₯ + 1) + 2π‘₯π‘₯+1 𝑑𝑑𝑑𝑑 π‘₯π‘₯π‘₯π‘₯π‘₯π‘₯π‘₯π‘₯(𝑦𝑦)βˆ’π‘¦π‘¦2 c. π‘₯π‘₯ 𝑦𝑦 = 𝑦𝑦 π‘₯π‘₯ implies 𝑑𝑑𝑑𝑑 = π‘₯π‘₯π‘₯π‘₯π‘₯π‘₯π‘₯π‘₯(π‘₯π‘₯)βˆ’π‘₯π‘₯2 𝑑𝑑𝑑𝑑 3 +2π‘₯π‘₯ d. ln(𝑦𝑦) = π‘₯π‘₯ 3 + 2π‘₯π‘₯ implies 𝑑𝑑𝑑𝑑 = (3π‘₯π‘₯ 2 + 2)𝑒𝑒 π‘₯π‘₯ e. All the above are correct. 4 1 1 19. Suppose π‘₯π‘₯Μ… = 𝑛𝑛 βˆ‘π‘›π‘›π‘–π‘–=1 π‘₯π‘₯𝑖𝑖 and 𝑦𝑦 = 𝑛𝑛 βˆ‘π‘›π‘›π‘–π‘–=1 𝑦𝑦𝑖𝑖. Then, βˆ‘π‘›π‘›π‘–π‘–=1(𝑦𝑦𝑖𝑖 βˆ’ 𝑦𝑦 )(π‘₯π‘₯𝑖𝑖 βˆ’ π‘₯π‘₯Μ… ) is equal to_______. a. βˆ‘π‘›π‘›π‘–π‘–=1(𝑦𝑦𝑖𝑖 βˆ’ 𝑦𝑦 )π‘₯π‘₯𝑖𝑖 b. βˆ‘π‘›π‘›π‘–π‘–=1(π‘₯π‘₯𝑖𝑖 βˆ’ π‘₯π‘₯Μ… )𝑦𝑦𝑖𝑖 c. βˆ‘π‘›π‘›π‘–π‘–=1 π‘₯π‘₯𝑖𝑖 𝑦𝑦𝑖𝑖 βˆ’ βˆ‘π‘›π‘›π‘–π‘–=1(π‘₯π‘₯Μ… 𝑦𝑦 ) d. (a) and (b) e. (a), (b), and (c) 20. Consider 𝑓𝑓(π‘₯π‘₯) = βˆ’3π‘₯π‘₯ 2 + 3π‘₯π‘₯ βˆ’ 2 Which of the following is incorrect? a. 𝑓𝑓(π‘₯π‘₯) is a convex function. b. βˆ’3π‘₯π‘₯ 2 + 3π‘₯π‘₯ β‰ˆ 2 + 𝑓𝑓(π‘Žπ‘Ž) + 𝑓𝑓 β€² (π‘Žπ‘Ž)(π‘₯π‘₯ βˆ’ π‘Žπ‘Ž), where π‘Žπ‘Ž is close to π‘₯π‘₯. c. 𝑓𝑓(2) = βˆ’8 d. 𝑓𝑓(π‘₯π‘₯) is strictly decreasing when π‘₯π‘₯ > 0.5. e. The range of the function 𝑓𝑓(π‘₯π‘₯) is (βˆ’βˆž, βˆ’1.25). Bonus Question 21. Which of the following is correct? a. If a function 𝑓𝑓(π‘₯π‘₯) is continuous at π‘₯π‘₯ = π‘Žπ‘Ž, then 𝑓𝑓(π‘₯π‘₯) must also be differentiable at π‘₯π‘₯ = π‘Žπ‘Ž. b. If the first and second derivatives of 𝑓𝑓(π‘₯π‘₯) are both positive, then 𝑓𝑓(π‘₯π‘₯) is a concave function. c. If lim 𝑓𝑓(π‘₯π‘₯) and lim 𝑔𝑔(π‘₯π‘₯) do not exist, then lim [𝑓𝑓(π‘₯π‘₯) + 𝑔𝑔(π‘₯π‘₯)] does not exist. π‘₯π‘₯β†’π‘Žπ‘Ž π‘₯π‘₯β†’π‘Žπ‘Ž π‘₯π‘₯β†’π‘Žπ‘Ž 1 d. Suppose the function 𝑓𝑓(π‘₯π‘₯) = 2π‘₯π‘₯ 4 βˆ’ 1. The first derivative of its inverse function is 8π‘₯π‘₯ 3. 6π‘₯π‘₯ 4 +8π‘₯π‘₯ 3 βˆ’4 ln π‘₯π‘₯ 2 +10π‘₯π‘₯βˆ’5 e. lim 5π‘₯π‘₯ 5 +4π‘₯π‘₯ 4 +2π‘₯π‘₯ 2 βˆ’βˆš2π‘₯π‘₯ = 0. π‘₯π‘₯β†’βˆž -- END OF PAPER-- GOOD LUCK! 5

Use Quizgecko on...
Browser
Browser