Class 12 Physics Formula Cheat Sheet PDF

Summary

This document is a physics formula cheat sheet designed for Class 12 students. It covers essential topics such as electric charges, fields, and current electricity, providing key formulas and concepts to aid students in their studies. The formulas are presented clearly, making it an invaluable resource for exam preparation and understanding the core principles of physics.

Full Transcript

# Physics Formula Cheat Sheet ## Class 12 ### Electric Charges & Fields * **Coulomb's Law** * $F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$ for vacuum * $F = \frac{1}{4\pi\epsilon r} \frac{q_1 q_2}{r^2}$ for medium * **Electric Field Intensity** * $\overrightarrow{E}...

# Physics Formula Cheat Sheet ## Class 12 ### Electric Charges & Fields * **Coulomb's Law** * $F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$ for vacuum * $F = \frac{1}{4\pi\epsilon r} \frac{q_1 q_2}{r^2}$ for medium * **Electric Field Intensity** * $\overrightarrow{E} = \frac{\overrightarrow{F}}{q_0}$ * $\overrightarrow{E} = k \frac{q}{r^2} \hat{r}$ * $q$ = Source charge * $q_0$ = Test charge * **Electric Flux** * $\phi = \overrightarrow{E} \cdot \overrightarrow{A} = EA \cos\theta$ for uniform electric field * $\phi = \int \overrightarrow{E} \cdot d\overrightarrow{A}$ for non-uniform * $\oint \overrightarrow{E} \cdot d\overrightarrow{A} = \frac{q_{in}}{\epsilon_0}$ for a closed surface * **Gauss's Law** * $\phi = \oint \overrightarrow{E} \cdot d\overrightarrow{A} = \frac{q_{net}}{\epsilon_0}$ Net charge enclosed by the closed surface * **Dipole Moment** ($\overrightarrow{p}$) * $p = q \cdot 2a$ * **Dipole placed in U-E-F** * Torque $\overrightarrow{\tau} = \overrightarrow{p} \times \overrightarrow{E}$ * Net force = 0 * **Work done in rotation of dipole from $\theta_1$ to $\theta_2$** * $U = pE (\cos\theta_1 - \cos\theta_2)$ * **Electrostatic potential energy** * $U = -p \cdot E$ * **Charge density** * Linear = $\lambda = \frac{q}{l}$ * Surface = $\sigma = \frac{q}{A}$ * Volume = $\rho= \frac{q}{V}$ * **Electric field due to dipole** * At an axial point: $E = \frac{2kp}{r^3}$ * On the equatorial line: $E = \frac{kp}{r^3}$ * At any general point: $E = \frac{kp}{r^3} \sqrt{1 + 3\cos^2\theta}$ * **Electric Field due to:** * Infinite Sheet of Charge = $E = \frac{\sigma}{2\epsilon_0} \hat{n}$ * Infinite long charged wire = $E = \frac{\lambda}{2\pi \epsilon_0 r}$ * **Potential due to uniformly charged Sphere** * $V = \frac{q}{4\pi\epsilon_0 r}$ Outside ($r > R$) * $V = \frac{q}{4\pi\epsilon_0 R}$ on the shell ($r = R$) * $V = \frac{q}{4\pi\epsilon_0 R}$ inside ($r < R$) $k=\frac{1}{4 \pi \varepsilon_{0}}$ $ \varepsilon_{0} = 8.854 \times 10^{-12} \frac{C^2}{N-m^2}$ * **Potential due to Non Conducting Uniformly Charged Sphere** * $V = \frac{q}{4\pi\epsilon_0 r}$ * $V = \frac{q}{4\pi\epsilon_0 R}$ * $V = \frac{q}{4\pi\epsilon_0 R^3} (3R^2 - r^2)$ * **Energy Stored in a Capacitor** * $U = \frac{1}{2}CV^2 = \frac{1}{2}QV = \frac{1}{2} \frac{Q^2}{C}$ * **Force Between Plates of capacitor** * $F = \frac{Q^2}{2A\epsilon_0}$ * **Common Potential after connecting two Capacitors** * $V = \frac{q_1 + q_2}{C_1 + C_2} = \frac{C_1V_1 + C_2V_2}{C_1 + C_2}$ * **Energy density** * $U = \frac{1}{2} \epsilon_0 E^2$ * **Energy loss** * $\Delta U = \frac{1}{2} \frac{C_1C_2}{C_1 + C_2} (V_1 - V_2)^2$ * **Electric Potential & Capacitance** * $V = \frac{q}{4\pi \epsilon_0 r}$ * *Potential* * Axial = $V = \frac{P \cos\theta}{4\pi \epsilon r^2}$ * Equatorial = $V = 0$ * At any point = $V = \frac{P \cos\theta}{4\pi \epsilon r^2}$ * Electric Potential Energy * $U = \frac{q_1q_2}{4\pi \epsilon_0 r}$ for two charges * **Capacitance** * $C = \frac{q}{v}$ * Series Combination $$\frac{1}{C_{eq}}= \frac{1}{c_1}+\frac{1}{c_2}$$ * Parallel Combination $$C_{eq} ={c_1}+{c_2}$$ * Relation between $\overrightarrow{E}$ & $V$: $E = -\frac{dv}{dr}$ or $V = -\int{\overrightarrow{E} \cdot \overrightarrow{dr}}$ * **Capacitance of Parallel Plate Capacitor** * Air filled= $C = \frac{\epsilon_0 A}{d}$ * Partially filled with dielectric= $C = \frac{\epsilon_0 A}{d-t(1-\frac{1}{k})}$ * Completely air filled capacitor: $$C= \frac{K \epsilon_0 A}{d}$$. * **Spherical Capacitor** * $C = 4\pi\epsilon_0 \frac{ab}{b-a}$ where a and b are radius of big and small sphere respectively within capacitor * **If inner grounded** * $C = 4\pi \epsilon_0 a$ *Capacitance of Isolated Sphere C=4πε0r where r is sphere's radius ### Current Electricity * **Electric Current (Average)** * $i = \frac{q}{t}$ * **Instantaneous** * $i = \frac{dq}{dt}$ * **Current Density** * $J = \frac{i}{A}$ * **Drift Velocity** * $V_d = \frac{e\tau E}{m} = \frac{i}{neA}$ * **Mobility** * $\mu = \frac{|V_d|}{E}= \frac{e \tau}{m}$ * **Resistivity** $$P=\frac{m}{ne^2 \tau}$$ * **Ohm's Law** * $V = IR$ * $R = \rho \frac{L}{A}$ Relation between $J$ & $\sigma$ are missing * **EMF of cell** * $E = V + Ir$ * **Terminal Potential Difference** * $V = E - Ir$ * **Relation b/w I&Vd**: I=AneVd Relation b/w J&E: $$J=\sigma E=1/AE=\sqrt{AR}$$ * **Power** * $P = VI = i^2R = \frac{V^2}{R}$ * **Energy** * $W = Vq = Vit = i^2Rt = \frac{V^2}{R}t$ * **Principle of Wheatstone Bridge** * $\frac{P}{Q} = \frac{R}{S}$ * **Temperature Coefficient** * $\alpha = \frac{R - R_0}{R_0(T - T_0)}$ * **Principle of Potentiometer** * $\frac{K}{V} = \frac{l}{L}$ * **Principle of Meter Bridge** * $R = \frac{l}{100 - l}S$ * **Combination of Identical Cell** * **Series** - ne/R + Nr * Current =ne/(R+nr) * Parallel * $$\frac{me}{mR+r}$$ * **Mixed** - mne/(mR+Nr) * **Joule's Law** $$H=I^2 R_t Joules$$ * Conversion between Joule and Calorie *$$H=\frac{I^2 R_t}{ 4.18} Calorie$$ ### Moving Charges and Magnetism * **Magnetic Force** * $\overrightarrow{F} = q(\overrightarrow{V} \times \overrightarrow{B})$ * Pitch (P) = \frac{2\pi mv \cos\theta }{qB} $$\mu_0=4\pi \times 10^{-7} \frac{T-M}{A} $$, * M=u(1+Xm) * Relation between B, H B= μH μ=μ0(1+xm) \*Gauss's Law for magnetism $$\oint B-dS= 0$$ #### Motion of Charge in Uniform Transverse Magnetic Field * $F_m = qVB = \frac{mv^2}{r}$ * **Radius of Circular Path** * $r = \frac{mv}{qB} = \frac{p}{qB} = \frac{\sqrt{2mK}}{qB} = \frac{\sqrt{2mqV}}{qB}$ Time period Time Period =$$T= \frac{2\pi r }{V}= \frac{2\pi m}{qB}$$ * **Magnetic Force on a Current Carrying Conductor** * $\overrightarrow{F} = I (\overrightarrow{l} \times \overrightarrow{B})$ * **Biot-Savart Law** * $dB = \frac{\mu_0}{4\pi} \frac{Idl \sin\theta}{r^2}$ **Magnetic field due to a Circular coil** *m.f at center of center circular coil,$$B=\frac{\mu_0 I}{2a}$$ * **Force between two Current Carrying parallel straight Conductor.** * $F = \frac{\mu_0}{4\pi} \frac{2I_1I_2}{r} l$ * **mf at axis of current carrying coil . $$ B=\frac{\mu_02\pi \alpha^2 }{ 4\pi (a^2+x^2)}$$ * **Ampere's Circuital law** $$\oint{B}=μ_0 $$ * Magnetic field due to an infinitely long straight wire of radius, a carrying current i at a point $$ B=\frac{\mu_0 r}{ 2\pi a} < a ,$$ $$B= μ0 /2\piα r = a $$ and $$ B=\frac{\mu_0 i}{ 2\pi r}> a`$$ * **Torque on a Current Carrying Coil placed in a Uniform magnetic Field.** $$I= \frac{NA Bsinθ }{CR}$$ OR $I= Kθ$ K=galvanometer Constant K=NAB/CI * **Galvanometer conversion and formula is as following ** *Conversion into Ammeter *Shunt resistance $$R = R_G/ I/l_g-I$$ \*Conversion into voltmeter R= V-Ig/Ig **Current senitivity (CS) and formulas** $$\frac{I α}{v} = N/k AB , Vs=\frac{(CS = Vs/R) }{(V/R) }$$ * Magnetic field to a current carrying solenoid Magnetic field strength due to core/ solenoid Bs = μoni = (μ • Ni)/l ,where n= number of turns per unit length ### Magnetism and Matter * Bar magnet as an equivalent solenoid * Magnet filed for bar magnet $$ B= \frac{μ_0 2M}{4πr^3,} $$ Q=2nI(πσ²) Potential energy of magnetic dipoles and magnet is given as :- * P=-MB cosθ * P = - M.B m = μ(1+ xm) μ=permeability v= volume and xm=suspectibility ### Alternating Current * RMS value of current & voltage $$v_r. m. s /i r.m.s =1.414 , v r.m.s or i r.m.s /2=0.70$$ * Average value of current & voltage * Average vale of current & voltage $$VorI = \frac {2 \to } π =0.6 37$$ * Alternating law V= Vosint I= Iosint $$X_L= wL= inductive reactance and X_c = {1\over Wc}$$ ### Ray Optics * Mirror formula $$1/f = 1/v+ 1/4 $$ and refractive index μ= Sini/ Sinr * For lenses equation $$1/ = 1/4 + 1/$$+Magnification , $$P=h^1/h2/ = V/4sin (A-m / 2 )$$ * Lens Marker Sin(A/2) $$M=\frac{(U-1)+( 1 / (P=2)} P=U/4$$ #### Refraction at spherical surfaces R & actual and apparent D u=Real depth App=App depth P = U-1/ R U= P/1-M ### Combination of Lenses * P = P1 +P2 - d P P1 #### Simple Microscope * M0 - final image at D- #### Wave Optics *Interference of light I(Max)=(a+b)^2 where I = a² and I α wave length from transition N₂->N₁ 1/ =(μ-I)(1+1) (a=0, 82x 10² ) 1/1=(1/ μ0 -1)/ L A =Angular from secondary Maxima 2 =2 /a

Use Quizgecko on...
Browser
Browser