ECN 4th Chapter PDF
Document Details
Uploaded by Deleted User
Tags
Summary
This document details network parameters, including impedance, admittance, and transmission parameters. It also includes examples and solutions, possibly from a textbook or study notes. The content appears to be geared towards undergraduate electrical engineering students studying circuit analysis.
Full Transcript
# Unit-y Network Parameters ## Two port network parameters ### Network Equation - V₁ and V₂ depend on I₁ and I₂ (independent) - Convert from terms of V₁ , V₂ to terms of I₁ , I₂ - Z = |[Z₁₁ Z₁₂] [Z₂₁ Z₂₂]| - Y = |[Y₁₁ Y₁₂] [Y₂₁ Y₂₂]| - T = |[A B] [C D]| - h = |[h₁₁ h₁...
# Unit-y Network Parameters ## Two port network parameters ### Network Equation - V₁ and V₂ depend on I₁ and I₂ (independent) - Convert from terms of V₁ , V₂ to terms of I₁ , I₂ - Z = |[Z₁₁ Z₁₂] [Z₂₁ Z₂₂]| - Y = |[Y₁₁ Y₁₂] [Y₂₁ Y₂₂]| - T = |[A B] [C D]| - h = |[h₁₁ h₁₂] [h₂₁ h₂₂]| ### Impedence parameters - V₁ = z₁₁I₁ + z₁₂I₂ - V₂ = z₂₁I₁ + z₂₂I₂ ### Admittance Parameters - I₁ = Y₁₁V₁ + Y₁₂V₂ - I₂ = Y₂₁V₁ + Y₂₂V₂ ### Transmission parameters (A, B..CO) parameters - V₁ = AV₂ - BI₂ - I₁ = CV₂ - DI₂ ### Inverse transmission parameters (A', B', C', D') - V₁ = A'V₂ - B'I₂ - I₁ = C'V₂ - D'I₂ ### Hybridetes parameters - V₁ = h₁₁I₁ + h₁₂V₂ - I₂ = h₂₁I₁ + h₂₂V₂ ### Inverse hybrid parametrs - I₁ = g₁₁V₁ + g₁₂I₂ - I₂ = g₂₁V₁ + g₂₂I₂ ## Z - parameters - |[V₁] [V₂]| = |[Z₁₁ Z₁₂] [Z₂₁ Z₂₂]| * |[I₁] [I₂]| - V₁ = z₁₁I₁ + z₁₂I₂ - V₂ = z₂₁I₁ + z₂₂I₂ ### Step 1 - Port 2-2' is opened. - Z₁₁ = V₁/I₁ - Z₂₁ = V₂/I₁ - Z₁₂ = V₁/I₂ - Z₂₂ = V₂/I₂ ### Step 2 - Find Z parameters of the network given. - **Step 0** - I₂=0 - 2-2' open circuited - Apply KVL: - V₁ = 3I₁ + 2I₂ → 0 - V₂ = 2I₁ (V.D across 2Ω is V₂) - Z₁₁ = V₁/I₁ = 5 - Z₂₁ = V₂/I₁ = 2 - Z₂₂ = V₂/I₁ = 2 - **Step 1** - I₁ = 0 - 1-1' open circuit - Apply KVL: - V₂ = 4I₂ + 2I₁ - V₁ = 2I₂ (V.D across 2Ω is V₁) - Z₁₂ = V₁/I₂ = 2 - Z₂₂ = V₂/I₂ = 6 - Z = |[5 2] [2 6]| ### Step 3 - Find the Z parameters - **Step 0** - I₂ = 0 (opencircuit) - V₁ = 3I₁ + 2I₁ + 2I₁ - V₂ = 2I₁ + 2I₁ - V₂ = 4I₁ - **Step 1** - I₁ = 0 (opencircuit) - V₁ = 2I₁ - V₂ = 4I₁ + 2I₁ = 6I₁ - Z₁₂ = V₁/I₂ = 2 - Z₂₂ = V₂/I₂ = 6 - Z = |[4 2] [2 6]| ## Y → parameters - |[I₁] [I₂]| = |[Y₁₁ Y₁₂] [Y₂₁ Y₂₂]| * |[V₁] [V₂]| - I₁ = Y₁₁V₁ + Y₁₂V₂ - I₂ = Y₂₁V₁ + Y₂₂V₂ ### Step 1 - Port 2-2' is shorted (input admittance) - Y₁₁ = I₁/V₁ - Y₂₁ = I₂/V₁ (S.C transfer admittance) ### Step 2 - Port 1-1' is shorted - Y₁₂ = I₁/V₂ (S.C Reverse transfer admittance) - Y₂₂ = I₂/V₂ (S.C output admittance) ### Step 3 - Find Y parameters - **Step 0** - V₂ = 0 (short circuited) - V₁ = 3I₁ + 2(I₁ + I₂) + 2I₁ - V₁ = 7I₁ + 2I₂ - Apply KVL: - 2(I₁ + I₂) + 2I₁ = 0 - I₂ = -6I₁ - I₁ = -2/3 I₂ - I₂ = -3/2 I₁ - V₁ = 7I₁ + 2[-3/2 I₁] - V₁ = [1/3] I₁ = -[1/2] I₂ - V₁ = -[1/2] I₂ - **Step 1** - V₁ = 0 - 1-1' shorted - 3I₁ + 2(I₁ + I₂) + 2I₁ = 0 - 3I₁ = (-2/3)I₂ = 0 - V₂ = 4I₂ + 2(I₁ + I₂) + 2I₁ - V₂ = 4I₁ + 6 I₂ - V₂ = 4I₁ + 6 (-2/3)I₁ - V₂ = -17I₁ - V₂ = -17(1/2)I₂ - V₂ = -34/2 I₂ - Y₁₂ = I₁/V₂ = -1/17 - Y₂₂ = I₂/V₂ - Y = |[1/3 -1/17] [-1/2 1/34]| ## 3. Transmission parameters - Transmission parameters, ABCD parameters. - |[V₁] [I₁]| = |[A B] [C D]| * |[V₂] [I₂]| - V₁ = AV₂ - BI₂ - I₁ = CV₂ - DI₂ ### Step 1 - I₂=0 port 2-2' opened - A = V₁/V₂ (open circuit Reverse voltage gain) - C = I₁/V₂ (open circuit reverse transfer admittance) ### Step 2 - V₂ = 0 port 2-2' is shorted. - B = -V₁/I₂ (short circuit Reverse transfer impedance) - D = -I₁/I₂ (short circuit Reverse current gain) ### Step 3 - Find A.BCD parameters - **Step 1** - I₂ =0 (opencircuit) - V₁ = I₁ + 2(I₁ - I₃ ) - V₂ = 0.5I₃ - I₃ + 0.5I₃ - 2( I₁ - I₃) = 0 - I₃ + 0.5I₃ - 2I₁ + 2I₃ = 0 - I₃ = (2/3.5)I₁ - I₃ = (4/7)I₁ - V₁ = I₁ + 2I₁ - 2(4/7)I₁ - V₁ = I₁ + 2I₁ - (8/7)I₁ - V₁ = 13/7 I₁ - V₂ = 0.5I₃ = 0.5(4/7)I₁ - V₂ = 2/7I₁ - A = V₁/V₂ = 13/7 * 7/2 = 13/2 - C = I₁/V₂ = 7/2/2/7 = 49/4 ### Step 2 - V₂ = 0 2-2' shorted - V₁ = I₁ + 2(I₁ + I₂) - V₂ = I₁ + 2(I₁ + I₂) - I₁ + 2(I₁ + I₂) = 0 - I₂ + 2I₁ + 2I₂ = 0 - I₁ = -2/3 I₂ - I₂ = -1/2 I₁ - V₁ = I₁ + 2(I₁ ) + 2*[2(-1/2)I₁] - V₁ = [2/3] I₂ + 4[-1/3]I₂ + 2. I₂. 3I₁-4I₂ - V₁ = -[2/3]I₂ - 3I₁ + 2I₂ - V₁ = -[2/3]I₂ + 2 I₂ - V₁ = -[2/3] I₂ - I₂ - V₁ = -[5/3] I₂ - V₁ = -5/3 I₂ - B = -V₁/I₂ = 5/3 = 5/2 - D = -I₁/I₂ = (2/3) * 3 = 3/2 ## Hybrid parameters [h] - |[V₁] [I₂]| = |[h₁₁ h₁₂] [h₂₁ h₂₂]| * |[I₁] [V₂]| - V₁ = h₁₁I₁ + h₁₂V₂ - I₂ = h₂₁I₁ + h₂₂V₂ ### Step 1 - V₂=0 port 2-2' is shorted - h₁₁ = V₁/I₁ (short circuit input impedance) - h₂₁ = I₂/I₁ (short circuit current gain) ### Step 2 - I₁ = 0 port 1-1' open circuit - h₁₂ = V₂/I₁ (open circuit reverse voltage gain - h₂₂ = I₂/V₂ (open circuit output admittance. ### Step 3 - Write the Expression for I₂ and determine all h and q parameters for figure. - **Step 1** - V₂ = 0 shorted - Apply KVL at mesh ① - V₁ = I₁ + I₂ + 2V₁ - -V₁ = I₁ + I₂ - Apply KVL at mesh ② - 2V₁ + (I₂) +(I₁ + I₂ + 2V₁) = 0 - 4V₁ + 2I₂ + I₁ = 0 - 4V₁ = -(I₁ + 2I₂) - Sub in ② - 4(-I₁ + I₂) = -(I₁ + 2I₂) - 4I₁ + 4I₂ = -(I₁ + 2I₂) - 5I₁ + 6I₂ = 0 - I₁ = -6/5 I₂ - I₂ = -5/6 I₁ - -V₁ = I₁ + I₂ - V₁ = -0.5I₁ - V₁ = 0.5I₁ - h₁₁ = V₁/I₁ = 0.5 - h₂₁ = I₂/I₁ = -5/6 = -1.5 - **Step 2** - I₁ =0 (open circuited) - Apply KVL at mesh ① - V₁ = (I₂ - I₃ + 2V₁) - -V₁ = I₂ - I₃ + 2V₁ - Apply KVL at mesh ② - 2V₁ + (I₂) + (I₂ - I₃ + 2V₁) - 2I₃ = 0 - Apply KVL at mesh ③ - V₂ = 2I₃ - Substitute (①) in (₂) - 2(-I₂ + I₃) + (I₂ - I₃ ) + 2I₃ = 0 - 2(-I₂ + I₃) + (I₂ - I₃) + I₂ - I₃+ 2(-I₂ + I₃) = 0 - -2I₂+2I3 + I₂- I₃ + I₂- I₃ - 2I₂+2I₃ = 0 - -2I₂ + 2I₂ = 0 - I₂ = 0 - -V₁ = I₂ - I₃ - V₁ = -I₃ - V₁ = I₃ - V₂ = 2I₃ - h12 = V₂/I₁ = 2I₃/I₁ = 2 - h₂₂ = I₂/V₂ = 0/2 = 0 ## T Network (Y parameters) - **Step 1** - Z₁₁ = Za + Zb + Zc - Z₂₂ = Zb + Zc - Z₁₂ = Zc - Z₂₁ = Zc - Za = Z₁₁ - Z₁₂ - Zb = Z₂₂ - Z₂₁ - Zc = Z₁₂ = Z₂₁ - **Step 2** - Y = |[1/(Za+Zb+Zc) -Zc/(Za+Zb+Zc)] [-Zc/(Za+Zb+Zc) 1/(Zb+Zc)]| - **Step 3** - Z₁₁ = Y₁₁ + Y₁₂ - Z₂₂ = Y₂₂ + Y₂₁ - Z₂₁ = -Y₁₂ - Z₁₂ = -Y₂₁ ## Example - Y = |[6 2] [2 1]| - Z = Y⁻¹ = |[1 -2] [-2 6]| - Y = |[6 -2] [-2 5]| - Z = Y⁻¹ = |[5/18 -1/9] [-1/9 2/9]| ## Two port network ### Reciprocal - z₁₁ = z₁₂ - y₂₁ = y₁₂ - h₂₁ = -h₁₂ - g₂₁ = -g₁₂ ### Symmetric - z₂₂ = z₁₁ - y₂₂ = y₁₁ - h₁₁h₂₂ - h₁₂h₂₁ = 1 - g₁₁h₂₂ - g₁₂g₂₁ = 1 - AD - BC = 1 - A = D ### Inverse transmission parameters ### Reciprocal - A'D'B'C' = 1 ### Symmetric - A'= D' ## Note: If the circuit consists of dependent sources we cannot say whether the network is symmetrical (or) reciprocal. ## Two port parameters conversion - Z ↔ Y - Z ↔ T - T ↔ Y - T ↔ H - H ↔ Z - A = Z₁₁ - B = Δ/Z₂₁ - C = 1/Z₂₁ - D = Z₂₂/Z₂₁ ## Given: - Z = |[3 -2] [2 -1]| - V₁ = 3I₁ + 2I₂ - V₂ = 2I₁ + 3I₂ - **Step 1** - I₂ = 0 - V₁ = AV₂ + BI₂ - I₁ = CV₂ + DI₂ - A= V₁/V₂ = 1.5 - C= I₁/V₂ = 0.5 - From equ's ① V₂ = 2I₁, - V₂ = 3I₁ - **Step 2** - V₂ = 0 - B = -V₁/I₂ = 2.5 - D = -I₁/I₂ = 1.5 - **Step 3** - T = |[1.5 -2.5] [0.5 1.5]| - AD - BC = 1 - (1.5 x 1.5) - (2.5)(0.5) - 2.25 - 1.25 - 1 ## Example - T = |[1.5 -2.5] [0.5 1.5]| - V₁ = 1.5V₂ - 2.5I₂ - I₁ = 0.5V₂ - 1.5I₂ - **Step 1** - h₁₁ = V₁/I₁ = 1.667 - h₂₁ = I₂/I₁ = -0.667 - **Step 2** - h₁₂ = V₂/I₁ = 1 - h₂₂ = I₂/V₂ = 0.33 - **Step 3** - V₁ = 1.5V₂ - 2.5I₂ - V₂ = 0.5V₂ - 1.5I₂ - V₂ = (2/3)I₂ - V₁ = 1.5V₂ - 2.5I₂ - V₁ = (2/3)V₂ = 0.667 - V₂ = 1/3 V₁ - h = |[1.667 0.667] [-0.667 0.33]| - h₁₂ = -h₂₁ = 2/3 (Reciprocal) - Symmetrical - AH = |[1.667 0.667] [0.33 0.33]| - |[2/2 2/2] [2/3 2/3]| = |[3/3 3/3] [3/3 3/3]| = 1 ## Series connection of two port Network - **Step 1** - Z = Z₁ + Z₂ - |[Z]| = |[Z₁]| + |[Z₂]| - |[Z]| = |[5 2] [2 6]| + |[3 1] [1 1]| - |[Z]| = |[8 3] [3 10]| ## Parallel connection - **Step 1** - Z = Z₁ + Z₂ - [Z] = [YA] + [YB] ## Example Bridged T' Network - **Step 1** - The Y21 parameters of the network shown in given figure → Bridged T - Y₁ = |[1/3 -1/6] [-1/6 1/3]| + |[1/3 -1/6] [-1/6 1/3]| - Y₁ = |[2/3 -1/3] [-1/3 2/3]| ## Twin T Network - Determine the Z-parameters for the two-port network in the figure given below. - Voltages are Same so parallel connection - **Network A** - Z = |[2/5 + 1/(1/2+1/2)] [1/(1/2+1/2)]| |[1/(1/2+1/2)] [1/(1/2+1/2)]| - Z = |[2.4 1] [1 1]| - [Y] = Z⁻¹ - **Network B** - Z = |[25+1/(1/2+1/2)] 1/(1/2+1/2)]| |[1/(1/2+1/2)] [1/(1/2+1/2)]| - Z = |[1 + 25] 1| |[1 1]| - Y = Z⁻¹ - **Network 2** - Z = |[25+1/1] 1/1| |[1/1 1/1]| = |[26 1] [1 1]| - Y = Z⁻¹ - **Network 3** - Z = |[25+1] 1| |[1 1]| - Z = |[1+25 1| |[1 1]]| = |[26 1| |[1 1]| - Y = Z⁻¹ ## Example for cascade connection of two networks - Find transmission parameters. - **Step 1** - I₂=0 - V₁ = 2I₁ - I₂ - V₂ = I₁ - A = V₁/V₂ = 3 - C = I₁/V₂ = 1 - **Step 2** - V₂ = 0 - V₁ = 2I₁ - B = -V₁/I₂ = -2 - D = -I₁/I₂ = 1 - **Step 3** - T₁ = T₂ = |[3 2] [1 1]| - T = [T₁] * [T₂] = |[3 2] [1 1]| * |[3 2] [1 1]| - T = |[9+2 6+2] [3+1 2+1]| = |[11 8] [4 3]| ## Note: - For Series-parallel connection of 2 Nlw [h] = [ha] + [hb] - For parallel - series connection of 2 Nlw [G] = [ga] + [gb] ## J - Notation - w = 5 rad/sec - JS(1) = JUL = SL - ω = 2πf - C = 1/(ωC) - Z = |[2-J0.2 -J0.2] [-J0.2 J14.8]| - Y = Z⁻¹ - Z = -0.04