Orbital Angular Momentum Operators PDF

Summary

This document provides detailed mathematical analysis about orbital angular momentum operators in quantum mechanics. Calculations and equations are included for derivation of eigen values of operators and eigen vectors. The study covers the mathematical basis of quantum mechanics.

Full Transcript

# Eigen Functions/Eigen States & Eigen Values of Orbital Angular Momentum Operators $L^2$ & $L_z$ * Eigen functions/ Eigen states & Eigen values of orbital angular momentum operators $L^2$ & $L_z$: * $[L^2, L_x] = 0$, $[L^2, L_y] = 0$, $[L^2, L_z] = 0$ * Since, $L^2$ commute with $L_x$, $L...

# Eigen Functions/Eigen States & Eigen Values of Orbital Angular Momentum Operators $L^2$ & $L_z$ * Eigen functions/ Eigen states & Eigen values of orbital angular momentum operators $L^2$ & $L_z$: * $[L^2, L_x] = 0$, $[L^2, L_y] = 0$, $[L^2, L_z] = 0$ * Since, $L^2$ commute with $L_x$, $L_y$, $L_z$ each component of 'L' can be separately diagonized. Hence it has a simultaneous eigen function with $L^2$. * $[L_x, L_y] \neq [L_y, L_z] \neq [L_z, L_x] \neq 0$ * Since the components of $L_x$, $L_y$ & $L_z$ donot mutually commute we can choose only one of the them to be simultaneously diagonized with $L^2$. Simply we can just aswell as take $[L^2, L_x]$ & $[L^2, L_y]$. * By convention we take $L_z$. # Let $|l,m>$ be common eigen states/eigen vectors/eigen functions of $L^2$ & $L_z$ with corresponding eigen values $ħ^2 l(l+1)$ & $mħ$ respectively. * $L^2 |l, m> = ħ^2 l(l+1) |l, m>$ * $L_z|l, m> = mħ|l, m>$ * Such eigen states constitute a complete orthonormal state. * i.e. $<l',m'|l, m> = δ_{l',l} δ_{m',m}$ * Consider * $<l', m'|L_z^2 |l, m> - <l', m'|L_z^2 |l, m> = <l', m'|L_x^2 + L_y^2 |l, m>$ * $=> <l', m'|L_z^2 |l, m> - <l', m'|L_z^2 |l, m> = <l', m'|L_x^2 |l, m> + <l', m'|L_y^2 |l, m>$ * $=> ħ^2 m^2 <l', m'|l, m> - m'^2 ħ^2 <l', m'|l, m> ≥ 0$ * $=> (ħ^2 (m^2 - m'^2) <l', m'|l, m> ≥ 0$ * $=> (m - m') (m + m') ≥ 0$ # Now, we want to introduce raising and lowering operators $L_+$ & $L_-$$ * $L_+ = \frac{1}{ħ}(L_x + iL_y)$ * $L_- = \frac{1}{ħ}(L_x - iL_y)$ * $[L^2, L±] = [L^2, L_x ± iL_y] = [L^2, L_x] ± i[L^2, L_y]$ * $=>[L^2, L±] = 0$ * Now $[L_z, L±] = [L_z, L_x ± iL_y] = [L_z, L_x] ± i[L_z, L_y]$ * $=> [L_z, L±] = iħL_y ± i(iħL_x) = iħL_y ± ħL_x$ * $=> [L_z, L±] = ħ(L_x ± iL_y)$ * $=> [L_z, L±] = ħL±$ # Now $[L_+, L_-] = [L_x + iL_y; L_x - iL_y]$ * $=> [L_+, L_] = (L_x + iL_y)(L_x - iL_y) - (L_x - iL_y)(L_x + iL_y)$ * $=> [L_+, L-] = L_x^2 - iL_xL_y + iL_yL_x + L_y^2 - L_x^2 - iL_xL_y + iL_yL_x - L_y^2$ * $=> [L_+, L-] = - i[L_x, L_y] - i[L_x, L_y]$ * $=> [L_+, L-] = -2i(iħL_z) = 2ħL_z$ * $=> [L_+, L-] = 2ħL_z$ # Now $(L_+L_-)+(L_-L_+)$= $(L_x + iL_y)(L_x - iL_y) + (L_x - iL_y)(L_x + iL_y)$ * $=> (L_+L_-)+(L_-L_+)$= $L_x^2 + L_y^2 + L_x^2 + L_y^2$ * $=> (L_+L_-)+(L_-L_+)$= $2(L_x^2 + L_y^2)$ * $=> (L_+L_-)+(L_-L_+)$= $2(L^2 - L_z^2) = 2ħ^2 l(l+1) - 2ħ^2 m^2$ * $=> L^2 = \frac{1}{2} [(L_+L_-)+(L_-L_+)] + L_z^2$ # Now multiply $L_+$ in equn (3) * $L_+ L^2 |l, m> = ħ^2 l(l+1) L_+ |l, m>$ * $As [L^2, L_+] = 0 => (L^2 L_+ - L_+ L^2)|l, m> = 0$ * $=> L^2 L_+ |l, m> = ħ^2 l(l+1) L_+ |l, m>$ * $=> L^2 L_+ |l, m> = ħ^2 (l+1)(l+2) L_+ |l, m>$ * $=> L^2 {L_+ |l, m>} = ħ^2 (l+1)(l+2){L_+ |l, m>}$ * $L_+ |l, m>$ is also a eigen vector of $L^2$ corresponding to same eigen value $ħ^2 (l+1)(l+2)$ * Similarly operating $L_+$ on equn (4) * $L_z L_+= mħ L_+$. * $=> L_z L_+ |l, m> = mħ L_+ |l, m>$ * $=> L_z L_+ |l, m> + ħ L_+ |l, m> = mħ L_+ |l, m> + ħ L_+ |l, m>$ * $=> L_z L_+ |l, m> = (m+1)ħ L_+ |l, m>$ * $=> L_z {L_+ |l, m>} = (m+1)ħ {L_+ |l, m>}$ * Thes equr (15) shows that $L_+ |l, m>$ is an eigen vector / eigen function of $L_z$ corresponding to eigen value $(m+1)ħ$. # Now operating $L_-$ on equn (4) * $L_- L_z |l, m> = mħ L_- |l, m>$ * $As [L_z, L_-] = -ħL_-$ * $=> (L_z L_- - L_- L_z) = -ħL_-$ * $=> (L_zL_-) = (L_-L_z) + ħL_-$ * Using these in equn (16) * $L_zL_-|l, m> + ħL_-|l, m> = mħL_-|l, m>$ * $=> L_zL_-|l, m> = mħ L_-|l, m> - ħL_-|l, m>$ * $=> L_z {L_- |l, m>} = (m-1)ħ {L_- |l, m>}$ * Thes equr (17) show that $L_- |l, m>$ is an eigen vector/ eigen function of $L_z$ corresponding to eigen value $(m-1)ħ$. * We may write * $L_+ |l, m> = C_+ |l, m + 1>$ * $L_- |l, m> = C_- |l, m - 1>$ # Since, $L_+|l,m>$ and $L_-|l,m>$ are raising and lowering the second quantum no. 'm' by one unity, $C_+$ & $(-)$ are normalization constant. * Equ (8) and (19) show why $L_±$ are called ladder operator. That $L_+$ raises eigen ket to the higher value of 'm' & $L_-$ is an operator that lowers eigen ket to the lower value of 'm'. * $L_+ |l, m +1> = C_+ |l, m + 2>$ * $L_+ |l, m +2>= C_+ |l, m + 3>$ * $...$ * $L_+ |l, m+l> = C_+ |l, m+l+1>$ * $L_+ |l, m+l+1> = C_+ |l, m+l+2> = 0$ * $L_- |l, m-1> = C_- |l, m - 2>$ * $L_- |l, m - 2> = C_- |l, m - 3>$ * $...$ * $L_- |l, m -l> = C_- |l, m-l-1>$ * $L_- |l, m -l-1> = C_- |l, m-l-2> = 0$ * Equ (20) & (21) shows that we can not go indefinitely otherwise we violate $|l^2| ≥ m^2$. * Highest Value m = m+ * Lowest Value m = m- * m+ - m- = +ve number # In similar manner if we argue that in ladder operator L not change. * Since, $|l, m + >$ and $|l, m - >$ are obtained from $|l, m>$ by repeated application of $L_+$ & $L_-$ respectively with adjacent eigen value 'm' differing by one unity. * We have $(m +) - (m - ) = +ve integer | zero. * Operating equr (20) by $L_-$ * $L_-L_+ |l, m + > = 0$ * $=>(L^2 - L_z^2 - ħL_z)|l, m + > = 0$ * $=> L^2 |l, m + > - L_z^2 |l, m + > -ħL_z |l, m + > = 0$ * $=> ħ²l(l+1) |l, m + > - m^2ħ^2 |l, m + > - m+ħ^2 |l, m + > = 0$ * $=> (ħ^2 (l(l+1) - m^2 - m+) |l, m + > = 0$ * $=> l(l+1) - m^2 - m+ = 0 => l(l+1) = m^2 + m+$ # Operating equn (14) by $L_+$ * $L+L_-|l, m-> = 0$ * $=> (L^2 - L_z^2 + ħL_z)|l, m-> = 0$ * $=> L^2 |l, m-> - L_z^2 |l, m-> + ħL_z |l, m-> = 0$ * $=> ħ²l(l+1) |l, m-> - m^2ħ^2 |l, m-> + m-ħ^2 |l, m-> = 0$ * $=> (ħ^2 (l(l+1) - m^2 + m-) |l, m-> = 0$ * $=> l(l+1) - m^2 + m- = 0 => l(l+1) = m^2 - m-$ # Comparing equ (33) & (23) * m + (m + + 1) = m-(m - 1). * $=> m^2 + m + = m^2 - m - $ * $=> m^2 + m^+ - m^2 + m_- = 0$ * $=> (m^+ + m-)(m^+ - m-) + (m^+ + m-) = 0$ * $=> (m^+ + m-)(m^+ - m- + 1) = 0$ * $=> (m^+ + m-) = 0$ 'on' $(m^+ - m- + 1) = 0$ * $=> m^+ = -m-$ 'or' $m^+ = m- - 1$ * or $m^+ = m- - 1$ : not acceptable because m+ - m- > 0. * Now λħ² be the eigen value of $L^2$ & λħ² depends only on $l$. So, that according to equn (22) & (23) m+ & m- should be function of $l$ only. * Let us choose the maximum value of 'm' should be equal to 'm'. # According to equ (24) $m + = l$ * $m + - m - = (l - (-l)) = 2l$ = (ve integer including 0) * ... m+ - m - allow value λ = 0, 1, 2, 3, .... * Therefore allow value λ = 0, 1, 2, 3, .... # For each value of 'l' the 'm' values goes from -l to +l in states of unity. * Using equation (26) in each of equn (22) & (23) * λ = l(l+1) & λ = -l(l - 1) = l(l + 1) * Therefore $|l, m> = λ²|l, m> = l(l+1)²|l, m>$ * The eigen value of $L²=l(l+1)ħ$ * But the eigen states of $L_z$ are different * $L_z|l, m> = mħ|l, m>$ * m = -l to +l through zero. * No. of state = <sub>2</sub>C<sup>l+1</sup> # Let us now determine $C_+$ & $C_-$. * $|P> = L_+|l, m> = C_+|l, m + 1>$ * $<P| = <l, m|L_- = <l, m+1|$ * According to normalization condition * $<P|P> = <l, m|L_-L_+|l, m> = C_+C_+^*<l, m + 1|l, m + 1>$ * $=> <l, m|L^2 - L_z^2 - ħL_z|l, m> = |C_+|^2$ * $=> ħ^2l(l+1)<l, m|l, m> - m^2ħ^2<l, m|l, m> - m ħ^2<l, m|l, m>= |C_+|^2$ * $=> (ħ^2 (l(l+1) - m^2 - m) |l, m|l, m> = |C_+|^2$ * $=> (ħ^2(l + 1 - m)(l - m))|l, m|l, m> = |C_+|^2$ * $=> (l + 1 - m)(l - m)|l, m|l, m> = |C_+|^2$ * $=> (l + 1 - m)(l - m) = |C_+|^2$ * $=> C_+ = \sqrt{(l + 1 - m)(l - m)}\hbar$ * $.. L_+|l, m>= \sqrt{(l + 1 - m)(l -m)}\hbar |l, m+1>$ * Again $L_-|l, m> = C_-|l, m-1>$ * According to normalisation condition * $<l, m|L_+L_-|l, m> = |C_-|^2$ * $=> <l, m|L^2 - L_z^2 + ħL_z|l, m> = |C_-|^2$ * $=> ħ^2l(l+1)<l, m|l, m> - m^2ħ^2<l, m|l, m> + m ħ^2<l, m|l, m>= |C_-|^2$ * $=> (ħ ^2 (l(l+1) - m^2 + m) |l, m|l, m> = |C_-|^2$ * $=> (ħ^2(l + 1 + m)(l - m))|l, m|l, m> = |C_-|^2$ * $=> (l + 1 + m)(l - m) = |C_-|^2$ * $=> C_- = \sqrt{(l + 1 + m)(l - m)}ħ$ * .. $L_-|l,m>= \sqrt{(l + 1 + m)(l - m)}\hbar |l, m -1>$ * For $m=l= (m +)$, then equn (30) becomes $L_+|l, l> = 0$ * For $m=-l= (m - )$, then equn (34) becomes $L_-|l, -l> = \sqrt{(l + 1 +(-l))(l - (-l))}\hbar |l, -l-1>$ * $=> \sqrt{(l + 1 -l)(l + l)}\hbar |l, -l-1>$ * $= \sqrt{(l + 1)} \hbar|l, -l-1>$ * Therefore our assumption $m + = l$ & $m - = -l$ is satisfied. * ... Total no. of 'm' states are $(2l + 1)$ * Let us now find eigen value and eigen vector of orbital angular momentum. * $L^2 |l, m> = ħ^2 l(l+1) |l, m>$ * $L_z |l, m> = mħ |l, m>$ * Where $l = 0, \frac{1}{2}, 1, \frac{3}{2}, 2,....$ & $m = -l$ to $+l$ through zero. # Schwarz Inequality:- * For any two states $|ψ>$ & $|\phi>$ of the Hilbert space 'H' we can show that * $|<ψ|\phi>|^2 ≤ <ψ|ψ><\phi|\phi>$ * Proof: * Let us consider a vector $|ψ + λ\phi>$ where λ is a complex no. Since, a scalar product of ψ + λ\phi with itself should always be greater than or equal to zero. * <ψ + λ*φ|ψ + λφ> ≥ 0 * Let $f(λ) = <ψ + λ\phi|ψ + λφ>$ * $=> <ψ|ψ> + <\phi|ψ>*λ + λ*<ψ|\phi> + λλ*<φ|\phi> ≥ 0$ * Differentiating equation (1) w.r.t. λ * $\frac{df(λ)}{dλ}$ = [$<ψ|ψ>+<φ|ψ>*λ + λ*<ψ|\phi>+ λλ*<φ|\phi>$] ≥ 0 * $=> \frac{df(λ)}{dλ} = <φ|ψ>*λ + λ*<ψ|\phi> ≥ 0$ * $=> \frac{df(λ)}{dλ} $ = $λ*<φ|ψ> + λ*<ψ|\phi> ≥ 0$ * For minimum $\frac{df(λ)}{dλ} = 0$ * $=> <φ|ψ>*λ + λ*<ψ|\phi> = 0$ * $=> λ = - \frac{<φ|ψ>*}{<ψ|\phi>}$ * Using equation (1) in equation (2) * $[f(λ)]_{min} = <ψ|ψ> - <φ|ψ>* \frac{<ψ|\phi>}{<φ|\phi>} + \frac{<φ|ψ>*}{<φ|\phi>}$ <ψ|\phi> ≥ 0 * $=> <ψ|ψ> - \frac{<φ|ψ>*}{<φ|\phi>}$ <ψ|\phi> ≥ 0 * $=> <ψ|ψ> <φ|\phi> - <φ|ψ>*<ψ|\phi> ≥ 0$ * $=> <ψ|ψ> <φ|\phi> ≥ <φ|ψ>*<ψ|\phi>$ * $=> <ψ|ψ> <φ|\phi> ≥ |<φ|ψ>|^2$ * $=> 1|<ψ|\phi>|^2 ≤ <ψ|ψ><\phi|\phi>$ (proved) # Q1. Show that $<ψ|ψ> + <φ|φ> ≥ 2Re <ψ|φ>$ * Let $|ψ> = |ψ_1 - ψ_2>$ & $|φ> = |ψ_1 - ψ_2>$ * The scalar product of $|ψ>$ & $<φ|$ * $<ψ|φ> = (|ψ_1>-|ψ_2>)(|ψ_1>-|ψ_2>)$ * $=> <ψ_1|ψ_1> - <ψ_1|ψ_2> - <ψ_2|ψ_1> + <ψ_2|ψ_2>$ * $=> <ψ_1|ψ_1> - <ψ_2|ψ_2> ≥ <ψ_1|ψ_2> + <ψ_2|ψ_1>$ * $=> <ψ_1|ψ_1> + <ψ_2|ψ_2> ≥ <ψ_1|ψ_2> + <ψ_2|ψ_1> + <ψ_1|ψ_2> + <ψ_2|ψ_1>$ * $=> <ψ_1|ψ_1> + <ψ_2|ψ_2> ≥ 2Re <ψ_1|ψ_2>$ (proved) # Triangle Inequality:- * Show that $Kψ + φ|ψ + φ> ≤ \sqrt{<ψ|ψ>} + \sqrt{<φ|φ>}$. * Proof: * If states ψ & φ are two states that are linearly independent then they satisfy above equation which is called triangle inequality. * $<ψ + φ|ψ + φ> = <ψ|ψ> + <ψ|φ> + <φ|ψ> + <φ|φ>$ * $=> <ψ + φ|ψ + φ> = <ψ|ψ> + <ψ|φ> + <φ|ψ>* + <φ|φ>$ * $=> <ψ + φ|ψ + φ> = <ψ|ψ> + <ψ|φ> + 2Re <ψ|φ>$ * If '$z$' is a complex no. , $Re~ z ≤ |z|$ * $=> Re <ψ|φ> ≤ |<ψ|φ>|$ * Equation (1) can be written as * $<ψ + φ|ψ + φ> <= |<ψ|ψ> + <φ|φ> + 2 <ψ|φ>|$ * According to Schwartz inequality * $<ψ|ψ><φ|φ> ≥ |<ψ|φ>|^2$ * $=> 1 <ψ|φ> | ≤ \sqrt{<ψ|ψ><φ|φ>}$ * Using equation (3) in equn (2) * $ <ψ + φ|ψ + φ> ≤ \sqrt{<ψ|ψ>} + \sqrt{<φ|φ>} + 2\sqrt{<ψ|ψ><φ|φ>}$ * $=> <ψ + φ|ψ + φ> ≤ (\sqrt{<ψ|ψ>} + \sqrt{<φ|φ>})^2$ * $=> \sqrt{<ψ + φ|ψ + φ>} ≤ \sqrt{<ψ|ψ>} + \sqrt{<φ|φ>}$ (proved) # If $|ψ>$ & $ φ>$ are linearly dependent, $|ψ>= α|φ> $ & if the proportionality scalar 'α' is real and positive, the triangle inequality becomes an equality. * The counter part of this inequality in Euclidean space is given by $|A + B| ≤ |A| + |B|$. * Uncertainty relation between two operators: # Let $<A>$ and $<B>$ denote the expectation values of two hermitian operators A & B with respect to normalized state vector $|ψ>$. * $<A> = <ψ|A|ψ>$ * <B> = <ψ|B|ψ> * And At A & Bt B = B # Now introducing the operator * ΔA = A - <A > => (ΔA)² = (A - <A>)² * $=> (ΔA)² = (A)² - 2 A <A> + <A>)²$ * ΔB = B - <B > => (ΔB)² = (B - <B>)² * $=> (ΔB)² = (B)² - 2B <B> + <B>)²$ * $<(ΔA)²> = <A²> - 2<A><A> + <A²>$ * $=> <(ΔA)²> = <A²> - 2<A²> + <A²>$ * $=> <(ΔA)²> = <A²> - <A²>$ * $<(ΔB)²> = <B²> - 2<B><B> + <B²>$ * $=> <(ΔB)²>= <B²> - 2 <B²> + <B²>$ * $=> <(ΔB)²> = <B²> - <B²>$ # The uncertainty ΔA & ΔB are defined by * ΔA = $\sqrt{<(ΔA)²>} = \sqrt{<A²> - <A>²}$ * ΔB = $\sqrt{<(ΔB)²>} = \sqrt{<B²> - <B>²}$ # Let us write the action of the operators of any state ψ as follows * $|χ> = ΔA|ψ> = (A - <A>)|ψ>$ * $|$〉 = $ΔB|ψ> = (B - <B>)|ψ>$ * The Schwartz inequality of two states $χ>$ & $〉$ * <χ|χ><〉|〉> $|<χ|〉|^2$ * Since, A & B are hermitian, so ΔA & ΔB must be hermitian. * $(ΔA)^+ = (A - <A>)^+ = A^t - <A>^*I = A - <A> = ΔA$ * $(ΔB)^+ = (B - <B>)^+ = B^t - <B>^*I = B - <B> = ΔB$ * Now, <χ|χ> = <ψ|ΔA<sup>†</sup>ΔA|ψ> = <ψ|ΔAΔA|ψ> * $=> <χ|χ> = <ψ|(ΔA)^2 |ψ>$ * <ψ|ψ> = <ψ|ΔB<sup>†</sup>ΔΒ|ψ> = <ψ|ΔΒΔΒ|ψ> * $=> <ψ|ψ> = <ψ|(ΔΒ)^2 |ψ>$ * <χ|ψ> = <ψ|ΔA<sup>†</sup>ΔΒ|ψ> = <ψ|ΔΑΔΒ|ψ> * $=> <χ|ψ> = <ψ|ΔΑΔΒ|ψ>$ * Using equation (13), (14) in equation (11) * <ψ|(ΔA)²|ψ><ψ|(ΔΒ)²|ψ> ≥ $ |<ψ|ΔΑΔΒ|ψ>|^2$ * Using completeness property * <ψ|(ΔA)²(ΔΒ)²|ψ> ≥ $ |<ψ|ΔΑΔΒ|ψ>|^2$ * ≥ $|<ψ|ΔΑΔΒ|ψ>|<ψ|ΔΑ<sup>†</sup>ΔΒ<sup>†</sup>|ψ>$ * ≥ $<ψ|ΔΑΔΒ ΔΑ<sup>†</sup>ΔΒ<sup>†</sup>|ψ>$ * ≥ $<ψ|ΔΑΔΒ ΔΑ<sup>†</sup>ΔΒ<sup>†</sup>|ψ>$ * ≥ $<ψ|(ΔΑΔΒ)^2|ψ>$ * ≥ $<ψ|(ΔΑΔΒ)^2|ψ>> |<ψ|(ΔΑΔΒ)|ψ>|$ * $=> <ψ|(ΔA)²(AB)²|ψ> ≥ |<ψ|(ΔΑΔΒ)^2|ψ>$ * Now, ΔΑΔΒ = [ΔΑ, ΔΒ] + $\frac{1}{2}$ {ΔΑ, ΔΒ} * $=> ΔΑΔΒ = \frac{1}{2} [ΔΑ, ΔΒ] + \frac{1}{2}$ {ΔΑ, ΔΒ} * .. [ΔΑ, ΔΒ] = ΔΑΔΒ - ΔΒΔΑ * = (A - <A>)(B - <B>) - (B - <B>)(A - <A>) * = AB - A<B> - <A>B + <A><B> - BA + B<A + <B>A - <B><A> * $=> <[ΔΑ, ΔΒ]> = <AB> - <A><B>- <A><B> + <A><B> - <BA> + <B><A>+<B><A>-<B><A>$ * $=> <[ΔΑ, ΔΒ]> = <AB> - <BA> = <[A,B]>$ * Now, $KΔΑ, ΔΒ>^2 = \frac{1}{4}K[A,B]>^2 + \frac{1}{4} K{ΔΑ, ΔΒ}>^2$ * $=> KΔΑ, ΔΒ>^2 ≥ \frac{1}{4}K[A,B]>^2$ * Now put A = x : B = P<sub>x</sub>: position operator * Δx.ΔP<sub>x</sub> ≥ $\frac{1}{2}$ : momentum operator * $=> Δx.ΔP<sub>x</sub> ≥ \frac{ħ}{2}$ $=>$ Δx.ΔP<sub>x</sub> ≥ $\frac{ħ}{2}$ (proved) * Similarly, Δy.ΔP<sub>y</sub> ≥ $\frac{ħ}{2}$ , Δz.ΔP<sub>z</sub> ≥ $\frac{ħ}{2}$ , Δθ.Δ$L$ ≥ $\frac{ħ}{2}$ * The minimum uncertainty wave packet - (Gaussian wave packet) * According to exact statement of uncertainty wave packet we have. * The minimum uncertainty product is, * Δx.ΔP<sub>x</sub> = $\frac{ħ}{2}$ * The minimum uncertainty product will be obtained if we choose the function in schwartz inequality, such that there is a sign of equality . * The sign of equality can be obtained if the function χ & ψ are proportional to each other. i.e. χ & ψ are linearly independent. * So, we can write χ = αψ. * Let choose X = pψ * $x=αψ$ * $=> \frac{dx}{dt} = α\frac{dψ}{dt}$. * $=> -\frac{ħ}{i} \frac{dψ}{dx} = αψ$ * $=> -iħ \frac{dψ}{dx} = αψ$ * Put -ħ/i = β, so β $\frac{dψ}{dx}$ = αψ * Integrating both sides of above equation. # $β \int_{}^{} \frac{dψ}{ψ} = α \int_{}^{} dx => \int_{}^{} \frac{dψ}{ψ} = \frac{α}{β} \int_{}^{} dx => lnψ = \frac{α}{β} x + c$ * $=> lnψ = \frac{α}{β} x + lnC$ * $=> ψ = Ce^{\frac{α}{β} x}$ * $=> ψ = Ne^{\frac{-x^2}{2β}}$ * Where N → normalization const. # As we want to represent a wave packet for which the integral ∫ ψ* ψ dx converges. β must be positive. * The magnitude of 'N' in equation (6) can be calculated by normalizing ψ* ψ dx = 1. * i.e . $\int_{}^{-\infty} ψ* ψ dx = 1 => \int_{}^{-\infty} N^2 e^{\frac{-x^2}{β}} dx = 1 $ * $=> N^2 \int_{}^{-\infty} e^{\frac{-x^2}{β}} dx = 1 => N^2 \int_{}^{-\infty} e^{\frac{-x^2}{β}} dx = 1 $ * Let put x²/β = t => x=√βt * $=> dx = 1β \frac{1}{2}t^{\frac{-1}{2}} dt = \frac{1}{2} √β t^{\frac{-1}{2}} dt$ # $N^2 \sqrtβ \int_{}^{} e^{-t} t^{\frac{-1}{2}} dt = 1 => N^2 \sqrtβ \int_{}^{} e^{-t} t^{\frac{-1}{2}} dt = 1 $ * $=> N^2 \sqrtβ Γ(\frac{1}{2}) = 1 => N^2√βπ = 1 => N^2 = \frac{1}{√βπ}$ * $=> N = \frac{1}{(βπ)^{1/4}}$ * Now the wave function * $ψ = (βπ)^{1/4}e^{\frac{-x^2}{2β}}$ *

Use Quizgecko on...
Browser
Browser