DFnotes PDF Notes
Document Details
Uploaded by Deleted User
Tags
Summary
These notes cover Boolean algebra, logic gates and digital electronics. They include various expressions, equations and diagrams. The topics explore different algebraic expressions and their equivalent forms.
Full Transcript
Contents 𝐶 =𝐴∙𝐵 𝐶 = 𝐴+𝐵 𝐶 = 𝐴̅ 𝐶 = ̅̅̅̅̅̅ 𝐴∙𝐵 𝐶 = ̅̅̅̅̅̅̅̅ 𝐴+𝐵 𝐶 = 𝐴 ⊕𝐵 𝐶=𝐴 ⨀ 𝐵 ̅̅̅̅̅ 𝐴̅ 𝐵̅ = 𝐴̅ + 𝐵̅ = 𝐴 + 𝐵 ...
Contents 𝐶 =𝐴∙𝐵 𝐶 = 𝐴+𝐵 𝐶 = 𝐴̅ 𝐶 = ̅̅̅̅̅̅ 𝐴∙𝐵 𝐶 = ̅̅̅̅̅̅̅̅ 𝐴+𝐵 𝐶 = 𝐴 ⊕𝐵 𝐶=𝐴 ⨀ 𝐵 ̅̅̅̅̅ 𝐴̅ 𝐵̅ = 𝐴̅ + 𝐵̅ = 𝐴 + 𝐵 ̅̅̅̅̅̅̅̅ 𝐴̅ + 𝐵̅ = 𝐴̅𝐵̅ = 𝐴 𝐵 o o o o o o o o o o o o 𝐸𝑎𝑙𝑙𝑜𝑤 = 0.01 𝑥 0.252 = 0.0025210 𝐸10 = 2−𝑛 2−𝑛 < 0.00252 2𝑛 > 397 𝑛 log 2 = log 397 log 397 𝑛= = 8.63 ≈ 9 log 2 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o - o o o o o o ⊕ ⊕ ⊕ ⊕ 0 ⊕ 0 ⊕ 1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ 𝐴 ∙ 0 = 0 (𝑁𝑢𝑙𝑙 𝐿𝑎𝑤) 𝐴 ∙ 1 = 𝐴 (𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝐿𝑎𝑤) 𝐴∙𝐴 =𝐴 𝐴 ∙ 𝐴̅ = 0 𝐴 + 0 = 𝐴 (𝑁𝑢𝑙𝑙 𝐿𝑎𝑤) 𝐴 + 1 = 1 (𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝐿𝑎𝑤) 𝐴+𝐴 =𝐴 𝐴 + 𝐴̅ = 1 𝐴+𝐵 =𝐵+𝐴 𝐴∙𝐵 =𝐵∙𝐴 (𝐴 + 𝐵) + 𝐶 = 𝐴 + (𝐵 + 𝐶) (𝐴 ∙ 𝐵)𝐶 = 𝐴(𝐵 ∙ 𝐶) 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶 𝐴 + 𝐵𝐶 = (𝐴 + 𝐵)(𝐴 + 𝐶) 𝐴 + 𝐴̅𝐵 = 𝐴 + 𝐵 𝐴(𝐴̅ + 𝐵) = 𝐴𝐵 𝐴∙𝐴 =𝐴 𝐴+𝐴 =𝐴 𝐴 + 𝐴𝐵 = 𝐴 𝐴(𝐴 + 𝐵) = 𝐴 ̅̅̅̅̅̅̅̅̅̅̅̅̅ 𝐴 + 𝐵 + 𝐶 = 𝐴̅ 𝐵̅ 𝐶̅ ̅̅̅̅̅̅̅ 𝐴 𝐵 𝐶 = 𝐴̅ + 𝐵̅ + 𝐶̅ ̅̅̅̅̅̅̅̅̅̅̅ 𝑓 = 𝐴[𝐵 + 𝐶̅ (𝐴𝐵 + 𝐴𝐶̅ ) ̅̅̅̅ ̅̅̅̅ = 𝐴[𝐵 + 𝐶̅ (𝐴𝐵 𝐴𝐶̅ )] = 𝐴[𝐵 + 𝐶̅ (𝐴̅ + 𝐵̅)(𝐴̅ + 𝐶)] = 𝐴[𝐵 + 𝐶̅ (𝐴̅𝐴̅ + 𝐴̅𝐶 + 𝐵̅𝐴̅ + 𝐵̅𝐶)] = 𝐴[𝐵 + 𝐶̅ (𝐴̅ + 𝐴̅𝐶 + 𝐴̅𝐵̅ + 𝐵̅𝐶)] ∙ = 𝐴(𝐵 + 𝐶̅ 𝐴̅ + 𝐶̅ 𝐴̅𝐶 + 𝐶̅ 𝐴̅𝐵̅ + 𝐶̅ 𝐵̅𝐶) = 𝐴(𝐵 + 𝐴̅𝐶̅ + 0 + 𝐴̅𝐵̅𝐶̅ + 0) ∙ = 𝐴𝐵 + 𝐴𝐴̅𝐶̅ + 𝐴𝐴̅𝐵̅𝐶̅ = 𝐴𝐵 ∙ 𝑓 = 𝐴 + 𝐵[𝐴𝐶 + (𝐵 + 𝐶̅ )𝐷] = 𝐴 + 𝐵[𝐴𝐶 + 𝐵𝐷 + 𝐶̅ 𝐷] = 𝐴 + 𝐵𝐴𝐶 + 𝐵𝐵𝐷 + 𝐵𝐶̅ 𝐷 = 𝐴 + 𝐴𝐵𝐶 + 𝐵𝐷 + 𝐵𝐶̅ 𝐷 ∙ = 𝐴(1 + 𝐵𝐶) + 𝐵𝐷(1 + 𝐶̅ ) = 𝐴 ∙ 1 + 𝐵𝐷 ∙ 1 = 𝐴 + 𝐵𝐷 𝑓(𝐴, 𝐵, 𝐶) = 𝐴̅𝐵 + 𝐵̅𝐶 𝑓(𝐴, 𝐵, 𝐶) = (𝐴̅ + 𝐵̅)(𝐵 + 𝐶) 𝑓(𝐴, 𝐵, 𝐶) = 𝐴̅𝐵 + 𝐵̅𝐶 = 𝐴̅𝐵 (𝐶 + 𝐶̅ ) + (𝐴 + 𝐴̅)𝐵̅ = 𝐴̅𝐵𝐶 + 𝐴̅𝐵𝐶̅ + 𝐴𝐵̅𝐶 + 𝐴̅𝐵̅𝐶 𝐴̅𝐵̅𝐶̅ 𝐴̅𝐵̅𝐶 𝐴̅𝐵𝐶̅ 𝐴̅𝐵𝐶 𝐴𝐵̅𝐶̅ 𝐴𝐵̅𝐶 𝐴𝐵𝐶̅ 𝐴𝐵𝐶 𝑓(𝐴, 𝐵, 𝐶) = 𝑓(𝐴, 𝐵, 𝐶) = ∑𝑚(1, 2, 3, 5) 𝑓(𝐴, 𝐵, 𝐶) = (𝐴̅ + 𝐵̅)(𝐵 + 𝐶) = (𝐴̅ + 𝐵̅ + 𝐶𝐶̅ ) (𝐴𝐴̅ + 𝐵 + 𝐶) = (𝐴̅ + 𝐵̅ + 𝐶)(𝐴̅ + 𝐵̅ + 𝐶̅ )(𝐴 + 𝐵 + 𝐶)(𝐴̅ + 𝐵 + 𝐶) 𝑓(𝐴, 𝐵, 𝐶) = ∙ ∙ ∙ 𝑓(𝐴, 𝐵, 𝐶) = ∏𝑀(0, 4, 6, 7) ∑𝑚(0, 2, 8, 10, 13) ∏𝑀(0, 1, 4, 5, 10, 11, 14, 15) ∑𝑚(2, 7, 15) + 𝑑(3, 8, 11, 12) ∑𝑚(1, 3, 7, 11, 15) + 𝑑(0, 2, 5) 𝑋 = 𝐴′ 𝐵′ 𝐶 ′ + 𝐴𝐵𝐶 ′ + 𝐴𝐵′ 𝐶 ′ + 𝐴𝐵𝐶 𝑋 𝐶 ∑𝑚(1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 15) As minterm 1 is covered by S and T. ∑𝑚(0, 1, 3, 7, 8, 9, 11, 15) ∑𝑚(0, 2, 3, 5) ∑𝑚(2, 3, 5, 7, 8, 9, 12, 13, 14, 15) I0 O0 I1 O1 I2. O2 M inputs. Encoder.. N outputs. IM-2. ON-2 IM-1 ON-1 ∑𝑚( 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15) ∑𝑚( 1, 3, 4, 5, 7, 9, 11, 12, 13, 15) ∑𝑚( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) S = AB’ + BA’ = A ⨁ B C = AB d = AB’ + BA’ = A ⨁ B d = A’B ⊕ ⊕ ⨀ ⨀ ⨀ ⨀ ⨀ ⊙ ⊙ ⊙ ⊙ ∑𝑚( 8, 9, 10, 11, 12, 13, 14, 15) ∑𝑚( 4, 5, 6, 7, 8, 9, 10, 11) ∑𝑚( 2, 3, 4, 5, 10, 11, 12, 13) ∑𝑚( 1, 2, 5, 6, 9, 10, 13, 14) ⨁ ⨁ ⨁ 𝚺 𝚺 𝚺 𝚺 ̅̅̅̅̅̅̅̅ 𝐿𝑂𝐴𝐷 ̅̅̅̅̅̅̅̅ 𝐿𝑂𝐴𝐷 ̅̅̅̅̅̅̅̅ 𝐿𝑂𝐴𝐷 ̅̅̅̅̅̅̅̅ 𝐿𝑂𝐴𝐷 ≤ ̅ 𝑊 ̅ 𝑊 ̅ 𝑊 ̅ 𝑊 ̅ 𝑊 = ∑𝑚(1, 3, 4, 6) = ∑𝑚(2, 4, 5, 7) = ∑𝑚(0, 1, 5, 7) = ∑𝑚(1, 2, 3, 4) ∑𝑚(2, 12, 13) ∑𝑚(7, 8, 9, 10, 11, 12, 13, 14, 15) ∑𝑚(0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15) ∑𝑚(1, 2, 8, 12, 13) ∑𝑚(0, 1, 2, 4) ∑𝑚(0, 5, 6, 7)