KPE 263 Introductory Biomechanics Lecture Notes PDF

Document Details

CorrectCanyon1181

Uploaded by CorrectCanyon1181

University of Toronto

Tags

biomechanics angular kinematics biomechanics education engineering

Summary

These lecture notes cover introductory biomechanics, focusing on angular kinematics. The document contains detailed information about concepts and formulas, presented in a clear and organized manner. It aims to provide students with comprehensive knowledge about biomechanics.

Full Transcript

KPE 263 Introductory Biomechanics Week 4-Part 1 Angular Kinematics Objectives Distinguish between linear, angular, and general motion Determine and quantify absolute and relative angles Quantify and interpret angular displacement, angular velocity, and angular accel...

KPE 263 Introductory Biomechanics Week 4-Part 1 Angular Kinematics Objectives Distinguish between linear, angular, and general motion Determine and quantify absolute and relative angles Quantify and interpret angular displacement, angular velocity, and angular acceleration 2 What is Biomechanics? BIOMECHANICS RIGID BODIES DEFORMABLE SOLIDS FLUIDS STATICS DYNAMICS Tissue Mechanics STATICS DYNAMICS KINEMATICS KINETICS Displacement/distance Force Velocity/speed Work Acceleration Energy Momentum Linear/Angular Linear/Angular 3 What is Biomechanics? BIOMECHANICS RIGID BODIES DEFORMABLE SOLIDS FLUIDS STATICS DYNAMICS Tissue Mechanics STATICS DYNAMICS KINEMATICS KINETICS Displacement/distance Force Velocity/speed Work Acceleration Energy Momentum Linear/Angular Linear/Angular 4 Angular Kinematics Angular Motion Motion about an axis of rotation All parts of a ridged body move through the same angle but different linear displacement Axis of rotation = line that is perpendicular to the plane in which the rotation occurs Axis of rotation (rotating about a vertical axis) Motion occurring in Motion occurring in sagittal transverse plane plane Axis of rotation (rotating about a vertical axis) 6 Angular Motion Quantifying Angular Motion Angular Motion is the change in position with respect to both spatial (relative to points in space) and temporal (relative to time) frames of reference Angular Displacement (ฮ˜) = change from the initial angular position O โˆ†๐œƒ = ๐œƒ2 โˆ’ ๐œƒ1 Angular Velocity (ฯ‰) = change in angular position relative to the time interval it took place ๐œƒ2 โˆ’ ๐œƒ1 O ๐œ”= ๐‘ก2 โˆ’ ๐‘ก1 Angular Acceleration (ฮฑ) = change in angular velocity relative to the interval of that change ๐œ”2 โˆ’ ๐œ”1 O ๐›ผ= ๐‘ก2 โˆ’ ๐‘ก1 7 Angular Motion Representing Angles ยท Angles (ฮธ) are measured in relation to circles Three different units ๐‘  Radians โ€“ most appropriate for angular motion ๐œƒ(๐‘Ÿ๐‘Ž๐‘‘) = a angular ๐‘Ÿ for โ€“ ratio of arc length to radius use Linearelations I deg3 โ€“ unitless 57. ๐‘  Degrees โ€“ most common/best understood ๐œƒ(๐‘‘๐‘’๐‘”) = 57.3 ๐‘Ÿ โ€“ 1๐‘Ÿ๐‘Ž๐‘‘ = 57.3ยฐ (57 3) rad. ๐‘  Revolutions/Rotations โ€“ qualitative ๐œƒ(๐‘Ÿ๐‘’๐‘ฃ) = 0.159 ๐‘Ÿ I revolution : 360 8 Angular Position Angular Position (ฮธ) Absolute Angle pr proximal oximates _ Orientation (angle) of a line segment in space SEGMENT ANGLES Example: Instantaneous angle (ฮธ) of trunk segment ๐‘ฆ๐‘๐‘Ÿ๐‘œ๐‘ฅ โˆ’ ๐‘ฆ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘™ #gat ฮธ Coordinate ๐‘ก๐‘Ž๐‘›๐œƒ = ๐‘ฅ๐‘๐‘Ÿ๐‘œ๐‘ฅ โˆ’ ๐‘ฅ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘™ (distaly tang = distale 0. 83 - 0 - O = Tan 24 - 0 53. O 0. 37 - 18 =. o tant 29 o 11 Angular Position (ฮธ) Absolute Angle Orientation (angle) of a line segment in space Example: Instantaneous angle (ฮธ) of trunk segment ๐‘ฆ๐‘๐‘Ÿ๐‘œ๐‘ฅ โˆ’ ๐‘ฆ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘™ ๐‘ก๐‘Ž๐‘›๐œƒ = ๐‘ฅ๐‘๐‘Ÿ๐‘œ๐‘ฅ โˆ’ ๐‘ฅ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘™ ฮธ 0.83 โˆ’ ๐ŸŽ. ๐Ÿ”๐Ÿ ๐‘ก๐‘Ž๐‘›๐œƒ = 0.24 โˆ’ ๐ŸŽ. ๐Ÿ“๐Ÿ‘ 0.83 โˆ’ ๐ŸŽ. ๐Ÿ”๐Ÿ ๐œƒ = ๐‘ก๐‘Ž๐‘›โˆ’1 0.24 โˆ’ ๐ŸŽ. ๐Ÿ“๐Ÿ‘ ๐œƒ = ๐‘ก๐‘Ž๐‘›โˆ’1 0.22 ๐œƒ = โˆ’37.18ยฐ โˆ’0.29 12 Angular Position (ฮธ) Absolute Angle Orientation (angle) of a line segment in space Example: Instantaneous angle (ฮธ) of thigh segment ๐‘ฆ๐‘๐‘Ÿ๐‘œ๐‘ฅ โˆ’ ๐‘ฆ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘™ ๐‘ก๐‘Ž๐‘›๐œƒ = ๐‘ฅ๐‘๐‘Ÿ๐‘œ๐‘ฅ โˆ’ ๐‘ฅ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘™ Fant = ๐ŸŽ. ๐Ÿ“๐Ÿ— โˆ’ 0.46 4 ยทฮธ ๐‘ก๐‘Ž๐‘›๐œƒ = G :tan- -OSe 0.52 โˆ’ 0.24 ๐ŸŽ. ๐Ÿ“๐Ÿ— โˆ’ 0.46 ๐œƒ = ๐‘ก๐‘Ž๐‘›โˆ’1 0 13 90% tant0.52 โˆ’ 0.24 =24.. 0 o= S ๐œƒ = ๐‘ก๐‘Ž๐‘›โˆ’1 0.13 ๐œƒ = 24.90ยฐ 0.28 13 Angular Position (ฮธ) If reference axis is fixed, then angular position is absolute e.g., trunk and thigh segment angles on previous slides (horizontal axis is โ€œfixedโ€ to the earth) If reference axis is capable of moving, then angular position is relative e.g., angle of the tibia with respect to the femur when running (knee joint angle) 14 Angular Motion Axis of rotation (rotating about a vertical axis) 15 Angular Position (ฮธ) Absolute vs. Relative Angles 16 Angular Position (ฮธ) Absolute vs. Relative Angles Segment Angles (Absolute) I n Wh flexion E knee angle 17 Angular Position (ฮธ) Relative Angles Angles created by the longitudinal axes of two distinct segments (e.g., knee flexion angle = the angle between the thing and the leg in the sagittal plane) Relative Angles found using the Law of Cosines C b ๐‘Ž2 = ๐‘2 + ๐‘ 2 โˆ’ 2 ๐‘๐‘ ๐‘ฅ ๐‘๐‘œ๐‘ ๐ด A a ๐‘ 2 = ๐‘Ž2 + ๐‘ 2 โˆ’ 2 ๐‘Ž๐‘ ๐‘ฅ ๐‘๐‘œ๐‘ ๐ต c ๐‘ 2 = ๐‘Ž2 + ๐‘ 2 โˆ’ 2 ๐‘Ž๐‘ ๐‘ฅ ๐‘๐‘œ๐‘ ๐ถ B 18 1 Angular Position (ฮธ) 02 Relative Angles: Example ๐‘Ž= ๐‘ฅโ„Ž๐‘–๐‘ โˆ’ ๐‘ฅ๐‘Ž๐‘›๐‘˜๐‘™๐‘’ 2 + ๐‘ฆโ„Ž๐‘–๐‘ โˆ’ ๐‘ฆ๐‘Ž๐‘›๐‘˜๐‘™๐‘’ 2 - ay ---- ยท 61) 05 a 0. ๐‘Ža = = + 0.61 โˆ’ 0.1818) 0.51 โˆ’ 0.38382 - 0 , 2 + 10. 61 - 0. 2 231 = 20. 069 185 +0. a ๐‘Ž= 0.0169 + 0.185 0. 31m C = โ‘ค 45m 0162m 0 b= a =. b C ๐’‚ =0.45m b=0.32m c=0.31m A at = b2+ c2 - zbcocosA ๐‘Ž2 = ๐‘2 + ๐‘ 2 โˆ’ 2 ๐‘๐‘ ๐‘ฅ ๐‘๐‘œ๐‘ ๐ด 31) 312 (0 32) (0 cost c B ยท 452-0 32" ,. +o. - 2. a 0 proximal. aS always define 0.452 = 0.322 + 0.312 โˆ’ 2 relative (0.32)(0.31) ๐‘ฅ ๐‘๐‘œ๐‘ ๐ด to A = - 900 dista A = -90ยฐ 625 2. 19 Angular Position (ฮธ) Relative Angles: Can also be found if we know absolute angles of two segments ๐œƒ๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ = ๐œƒ๐‘๐‘Ÿ๐‘œ๐‘ฅ๐‘–๐‘š๐‘Ž๐‘™ โˆ’ ๐œƒ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘™ ๐œƒ๐‘˜๐‘›๐‘’๐‘’ = ๐œƒ๐‘กโ„Ž๐‘–๐‘”โ„Ž โˆ’ ๐œƒ๐‘™๐‘’๐‘” 20

Use Quizgecko on...
Browser
Browser