KPE 263 Introductory Biomechanics Lecture Notes PDF
Document Details

Uploaded by CorrectCanyon1181
University of Toronto
Tags
Summary
These lecture notes cover introductory biomechanics, focusing on angular kinematics. The document contains detailed information about concepts and formulas, presented in a clear and organized manner. It aims to provide students with comprehensive knowledge about biomechanics.
Full Transcript
KPE 263 Introductory Biomechanics Week 4-Part 1 Angular Kinematics Objectives Distinguish between linear, angular, and general motion Determine and quantify absolute and relative angles Quantify and interpret angular displacement, angular velocity, and angular accel...
KPE 263 Introductory Biomechanics Week 4-Part 1 Angular Kinematics Objectives Distinguish between linear, angular, and general motion Determine and quantify absolute and relative angles Quantify and interpret angular displacement, angular velocity, and angular acceleration 2 What is Biomechanics? BIOMECHANICS RIGID BODIES DEFORMABLE SOLIDS FLUIDS STATICS DYNAMICS Tissue Mechanics STATICS DYNAMICS KINEMATICS KINETICS Displacement/distance Force Velocity/speed Work Acceleration Energy Momentum Linear/Angular Linear/Angular 3 What is Biomechanics? BIOMECHANICS RIGID BODIES DEFORMABLE SOLIDS FLUIDS STATICS DYNAMICS Tissue Mechanics STATICS DYNAMICS KINEMATICS KINETICS Displacement/distance Force Velocity/speed Work Acceleration Energy Momentum Linear/Angular Linear/Angular 4 Angular Kinematics Angular Motion Motion about an axis of rotation All parts of a ridged body move through the same angle but different linear displacement Axis of rotation = line that is perpendicular to the plane in which the rotation occurs Axis of rotation (rotating about a vertical axis) Motion occurring in Motion occurring in sagittal transverse plane plane Axis of rotation (rotating about a vertical axis) 6 Angular Motion Quantifying Angular Motion Angular Motion is the change in position with respect to both spatial (relative to points in space) and temporal (relative to time) frames of reference Angular Displacement (ฮ) = change from the initial angular position O โ๐ = ๐2 โ ๐1 Angular Velocity (ฯ) = change in angular position relative to the time interval it took place ๐2 โ ๐1 O ๐= ๐ก2 โ ๐ก1 Angular Acceleration (ฮฑ) = change in angular velocity relative to the interval of that change ๐2 โ ๐1 O ๐ผ= ๐ก2 โ ๐ก1 7 Angular Motion Representing Angles ยท Angles (ฮธ) are measured in relation to circles Three different units ๐ Radians โ most appropriate for angular motion ๐(๐๐๐) = a angular ๐ for โ ratio of arc length to radius use Linearelations I deg3 โ unitless 57. ๐ Degrees โ most common/best understood ๐(๐๐๐) = 57.3 ๐ โ 1๐๐๐ = 57.3ยฐ (57 3) rad. ๐ Revolutions/Rotations โ qualitative ๐(๐๐๐ฃ) = 0.159 ๐ I revolution : 360 8 Angular Position Angular Position (ฮธ) Absolute Angle pr proximal oximates _ Orientation (angle) of a line segment in space SEGMENT ANGLES Example: Instantaneous angle (ฮธ) of trunk segment ๐ฆ๐๐๐๐ฅ โ ๐ฆ๐๐๐ ๐ก๐๐ #gat ฮธ Coordinate ๐ก๐๐๐ = ๐ฅ๐๐๐๐ฅ โ ๐ฅ๐๐๐ ๐ก๐๐ (distaly tang = distale 0. 83 - 0 - O = Tan 24 - 0 53. O 0. 37 - 18 =. o tant 29 o 11 Angular Position (ฮธ) Absolute Angle Orientation (angle) of a line segment in space Example: Instantaneous angle (ฮธ) of trunk segment ๐ฆ๐๐๐๐ฅ โ ๐ฆ๐๐๐ ๐ก๐๐ ๐ก๐๐๐ = ๐ฅ๐๐๐๐ฅ โ ๐ฅ๐๐๐ ๐ก๐๐ ฮธ 0.83 โ ๐. ๐๐ ๐ก๐๐๐ = 0.24 โ ๐. ๐๐ 0.83 โ ๐. ๐๐ ๐ = ๐ก๐๐โ1 0.24 โ ๐. ๐๐ ๐ = ๐ก๐๐โ1 0.22 ๐ = โ37.18ยฐ โ0.29 12 Angular Position (ฮธ) Absolute Angle Orientation (angle) of a line segment in space Example: Instantaneous angle (ฮธ) of thigh segment ๐ฆ๐๐๐๐ฅ โ ๐ฆ๐๐๐ ๐ก๐๐ ๐ก๐๐๐ = ๐ฅ๐๐๐๐ฅ โ ๐ฅ๐๐๐ ๐ก๐๐ Fant = ๐. ๐๐ โ 0.46 4 ยทฮธ ๐ก๐๐๐ = G :tan- -OSe 0.52 โ 0.24 ๐. ๐๐ โ 0.46 ๐ = ๐ก๐๐โ1 0 13 90% tant0.52 โ 0.24 =24.. 0 o= S ๐ = ๐ก๐๐โ1 0.13 ๐ = 24.90ยฐ 0.28 13 Angular Position (ฮธ) If reference axis is fixed, then angular position is absolute e.g., trunk and thigh segment angles on previous slides (horizontal axis is โfixedโ to the earth) If reference axis is capable of moving, then angular position is relative e.g., angle of the tibia with respect to the femur when running (knee joint angle) 14 Angular Motion Axis of rotation (rotating about a vertical axis) 15 Angular Position (ฮธ) Absolute vs. Relative Angles 16 Angular Position (ฮธ) Absolute vs. Relative Angles Segment Angles (Absolute) I n Wh flexion E knee angle 17 Angular Position (ฮธ) Relative Angles Angles created by the longitudinal axes of two distinct segments (e.g., knee flexion angle = the angle between the thing and the leg in the sagittal plane) Relative Angles found using the Law of Cosines C b ๐2 = ๐2 + ๐ 2 โ 2 ๐๐ ๐ฅ ๐๐๐ ๐ด A a ๐ 2 = ๐2 + ๐ 2 โ 2 ๐๐ ๐ฅ ๐๐๐ ๐ต c ๐ 2 = ๐2 + ๐ 2 โ 2 ๐๐ ๐ฅ ๐๐๐ ๐ถ B 18 1 Angular Position (ฮธ) 02 Relative Angles: Example ๐= ๐ฅโ๐๐ โ ๐ฅ๐๐๐๐๐ 2 + ๐ฆโ๐๐ โ ๐ฆ๐๐๐๐๐ 2 - ay ---- ยท 61) 05 a 0. ๐a = = + 0.61 โ 0.1818) 0.51 โ 0.38382 - 0 , 2 + 10. 61 - 0. 2 231 = 20. 069 185 +0. a ๐= 0.0169 + 0.185 0. 31m C = โค 45m 0162m 0 b= a =. b C ๐ =0.45m b=0.32m c=0.31m A at = b2+ c2 - zbcocosA ๐2 = ๐2 + ๐ 2 โ 2 ๐๐ ๐ฅ ๐๐๐ ๐ด 31) 312 (0 32) (0 cost c B ยท 452-0 32" ,. +o. - 2. a 0 proximal. aS always define 0.452 = 0.322 + 0.312 โ 2 relative (0.32)(0.31) ๐ฅ ๐๐๐ ๐ด to A = - 900 dista A = -90ยฐ 625 2. 19 Angular Position (ฮธ) Relative Angles: Can also be found if we know absolute angles of two segments ๐๐๐๐๐๐ก๐๐ฃ๐ = ๐๐๐๐๐ฅ๐๐๐๐ โ ๐๐๐๐ ๐ก๐๐ ๐๐๐๐๐ = ๐๐กโ๐๐โ โ ๐๐๐๐ 20