Memory Management PDF
Document Details
Uploaded by SelfSufficiencyUnicorn86
Drs. Azzam & Sajid
Tags
Summary
These notes cover memory management concepts, including background, swapping, contiguous memory allocation, paging, and more. The content draws from Operating System Concepts by Silberschatz, Galvin, and Gagne.
Full Transcript
Memory Management Drs. Azzam & Sajid Memory Management Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Note: Slides taken from Operating System Concepts (Silberschatz, Galvin and Gagne) Background Program must be...
Memory Management Drs. Azzam & Sajid Memory Management Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Note: Slides taken from Operating System Concepts (Silberschatz, Galvin and Gagne) Background Program must be brought (from disk) into memory and placed within a process for it to be run Main memory and registers are only storage CPU can access directly Register access in one CPU clock (or less) Main memory can take many cycles Cache sits between main memory and CPU registers Protection of memory required to ensure correct operation 4 ku.ac.ae Memory Management ❑ Modeling Multiprogramming — Degree of multiprogramming — If processes spend 80% of time waiting for I/O, at least 100 processes must be in memory at once to get the CPU CPU utilization = 1 – pn p is the fraction of time spent by the process waiting for I/O n is the number of processes in memory (multiprogramming degree) Operating System Concepts – 7th Edition, Feb 22, 2005 8.4 Silberschatz, Galvin and Gagne ©2005 Base and Limit Registers A pair of base and limit registers define the logical address space Binding of Instructions and Data to Memory Address binding of instructions and data to memory addresses can happen at three different stages Compile time: If memory location known a priori, absolute code can be generated; must recompile code if starting location changes Load time: Must generate relocatable code if memory location is not known at compile time Execution time: Binding delayed until run time if the process can be moved during its execution from one memory segment to another. Need hardware support for address maps (e.g., base and limit registers) Multistep Processing of a User Program Logical vs. Physical Address Space The concept of a logical address space that is bound to a separate physical address space is central to proper memory management Logical address – generated by the CPU; also referred to as virtual address Physical address – address seen by the memory unit Logical and physical addresses are the same in compile-time and load-time address-binding schemes; logical (virtual) and physical addresses differ in execution-time address-binding scheme Memory-Management Unit (MMU) Hardware device that maps virtual to physical address In MMU scheme, the value in the relocation register is added to every address generated by a user process at the time it is sent to memory The user program deals with logical addresses; it never sees the real physical addresses Dynamic relocation using a relocation register Swapping A process can be swapped temporarily out of memory to a backing store, and then brought back into memory for continued execution Backing store – fast disk large enough to accommodate copies of all memory images for all users; must provide direct access to these memory images Roll out, roll in – swapping variant used for priority-based scheduling algorithms; lower-priority process is swapped out so higher-priority process can be loaded and executed Major part of swap time is transfer time; total transfer time is directly proportional to the amount of memory swapped Modified versions of swapping are found on many systems (i.e., UNIX, Linux, and Windows) System maintains a ready queue of ready-to-run processes which have memory images on disk Schematic View of Swapping Contiguous Allocation Main memory usually into two partitions: Resident operating system, usually held in low memory with interrupt vector User processes then held in high memory Relocation registers used to protect user processes from each other, and from changing operating-system code and data Base register contains value of smallest physical address Limit register contains range of logical addresses – each logical address must be less than the limit register MMU maps logical address dynamically Address protection with base and limit registers Contiguous Allocation (Cont.) Multiple-partition allocation Hole – block of available memory; holes of various size are scattered throughout memory When a process arrives, it is allocated memory from a hole large enough to accommodate it Operating system maintains information about: a) allocated partitions b) free partitions (hole) OS OS OS OS process 5 process 5 process 5 process 5 process 9 process 9 process 8 process 10 process 2 process 2 process 2 process 2 Dynamic Storage-Allocation Problem How to satisfy a request of size n from a list of free holes First-fit: Allocate the first hole that is big enough Best-fit: Allocate the smallest hole that is big enough; must search entire list, unless ordered by size Produces the smallest leftover hole Worst-fit: Allocate the largest hole; must also search entire list Produces the largest leftover hole First-fit and best-fit better than worst-fit in terms of speed and storage utilization Pointer will Memory Allocation Methods be fixed First Fit Algorithm: Allocate the first hole that is 25MB big enough 1st fit P1=15MB 40MB Next fit Next Fit Algorithm: Same as first fit but start 100MB search always from the last allocated hole 20MB P2=18MB 10MB Fragmentation External Fragmentation – total memory space exists to satisfy a request, but it is not contiguous Internal Fragmentation – allocated memory may be slightly larger than requested memory; this size difference is memory internal to a partition, but not being used Reduce external fragmentation by compaction Shuffle memory contents to place all free memory together in one large block Compaction is possible only if relocation is dynamic, and is done at execution time Paging Logical address space of a process can be noncontiguous; process is allocated physical memory whenever the latter is available Divide physical memory into fixed-sized blocks called frames (size is power of 2, between 512 bytes and 8,192 bytes) Divide logical memory into blocks of same size called pages Keep track of all free frames To run a program of size n pages, need to find n free frames and load program Set up a page table to translate logical to physical addresses Internal fragmentation Address Translation Scheme Address generated by CPU is divided into: Page number (p) – used as an index into a page table which contains base address of each page in physical memory Page offset (d) – combined with base address to define the physical memory address that is sent to the memory unit page number page offset p d m-n n For given logical address space 2m and page size 2n Address Translation Example Paging Hardware Paging Model of Logical and Physical Memory Paging Example 32-byte memory and 4-byte pages Free Frames Before allocation After allocation Background Virtual memory – separation of user logical memory from physical memory. Only part of the program needs to be in memory for execution Logical address space can therefore be much larger than physical address space Allows address spaces to be shared by several processes Allows for more efficient process creation Virtual memory can be implemented via: Demand paging Demand segmentation Virtual Memory That is Larger Than Physical Memory Virtual-address Space Shared Library Using Virtual Memory Demand Paging Bring a page into memory only when it is needed Less I/O needed Less memory needed Faster response More users Page is needed reference to it invalid reference abort not-in-memory bring to memory Lazy swapper – never swaps a page into memory unless page will be needed Swapper that deals with pages is a pager Transfer of a Paged Memory to Contiguous Disk Space Valid-Invalid Bit With each page table entry a valid–invalid bit is associated (v in-memory, i not-in-memory) Initially valid–invalid bit is set to i on all entries Example of a page table snapshot: Frame # valid-invalid bit v v v v i …. i i page table During address translation, if valid–invalid bit in page table entry is I page fault Page Table When Some Pages Are Not in Main Memory Page Fault If there is a reference to a page, first reference to that page will trap to operating system: page fault 1. Operating system looks at another table to decide: Invalid reference abort Just not in memory 2. Get empty frame 3. Swap page into frame 4. Reset tables 5. Set validation bit = v 6. Restart the instruction that caused the page fault Steps in Handling a Page Fault Performance of Demand Paging Page Fault Rate 0 p 1.0 if p = 0 no page faults if p = 1, every reference is a fault Effective Access Time (EAT) EAT = (1 – p) x memory access + p (page fault overhead + swap page out + swap page in + restart overhead ) Demand Paging Example Memory access time = 200 nanoseconds Average page-fault service time = 8 milliseconds EAT = (1 – p) x 200 + p (8 milliseconds) = (1 – p x 200 + p x 8,000,000 = 200 + p x 7,999,800 If one access out of 1,000 causes a page fault, then EAT = 8.2 microseconds. This is a slowdown by a factor of 40!! What happens if there is no free frame? Page replacement – find some page in memory, but not really in use, swap it out algorithm performance – want an algorithm which will result in minimum number of page faults Same page may be brought into memory several times Page Replacement Prevent over-allocation of memory by modifying page-fault service routine to include page replacement Use modify (dirty) bit to reduce overhead of page transfers – only modified pages are written to disk Page replacement completes separation between logical memory and physical memory – large virtual memory can be provided on a smaller physical memory Need For Page Replacement Basic Page Replacement 1. Find the location of the desired page on disk 2. Find a free frame: - If there is a free frame, use it - If there is no free frame, use a page replacement algorithm to select a victim frame 3. Bring the desired page into the (newly) free frame; update the page and frame tables 4. Restart the process Page Replacement Page Replacement Algorithm ❑ Optimal Page Replacement Method ▪ Pages are replaced which would not be used for the longest duration of time in the future ▪ Initially, all page slots are empty and then filling starts Page Replacement Algorithm ❑ Not Recently Used Page Replacement Method ▪ Pages are replaced which are least recently used ▪ Initially, all page slots are empty and then filling starts Page Replacement Algorithm ❑ First In Fist Out Page Replacement Method ▪ Simplest one, OS maintains a linked list of all pages ▪ Page at the beginning of the list is replaced Page Replacement Algorithm ❑ Second Chance Page Replacement Method ▪ Pages are sorted in FIFO order ▪ Suppose the fault occurs at 20, the oldest page A which arrived at time 0 will be evicted from the list and will be given a second chance at the end