Summary

This document describes various techniques and materials used for composite repairs, focusing on vacuum bagging, heat application, and different types of layups. It details processes for repairing aircraft and other composite components, emphasizing various application methods and requirements.

Full Transcript

Peel Ply Peel plies are often used to create a clean surface for bonding purposes. A thin layer of fiberglass is cured with the repair part. Just before the part is bonded to another structure, the peel ply is removed. The peel ply is easy to remove and leaves a clean surface for bonding. Peel plies...

Peel Ply Peel plies are often used to create a clean surface for bonding purposes. A thin layer of fiberglass is cured with the repair part. Just before the part is bonded to another structure, the peel ply is removed. The peel ply is easy to remove and leaves a clean surface for bonding. Peel plies are manufactured from polyester, nylon, flouronated ethylene propylene (FEP), or coated fiberglass. They can be difficult to remove if overheated. Some coated peel plies can leave an undesirable contamination on the surface. The preferred peel ply material is polyester that has been heat-set to eliminate shrinkage. Layup Tapes 50 pounds per square inch (psi) and 10 ounces is used for 50–100 psi. Vacuum Bag The vacuum bag material provides a tough layer between the repair and the atmosphere. The vacuum bag material is available in different temperature ratings, so make sure that the material used for the repair can handle the cure temperature. Most vacuum bag materials are one time use, but material made from flexible silicon rubber is reusable. Two small cuts are made in the bagging material so that the vacuum probe valve can be installed. The vacuum bag is not very flexible and plies need to be made in the bag if complex Vacuum bag sealing tape, also called sticky tape, is used to seal the vacuum bag to the part or tool. Always check the temperature rating of the tape before use to ensure that you use appropriately rated tape. Perforated Release Film Perforated parting film is used to allow air and volatiles out of the repair, and it prevents the bleeder ply from sticking to the part or repair. It is available with different size holes and hole spacing depending on the amount of bleeding required. Solid Release Film Solid release films are used so that the prepreg or wet layup plies do not stick to the working surface or caul plate. Solid release film is also used to prevent the resins from bleeding through and damaging the heat blanket or caul plate if they are used. Breather Material The breather material is used to provide a path for air to get out of the vacuum bag. The breather must contact the bleeder. Typically, polyester is used in either 4-ounce or 10-ounce weights. Four ounces is used for applications below Figure 7-36. Bagging of complex part. Figure 7-35. Bagging materials. Figure 7-37. Self-sealing vacuum bag with heater element. 7-21 shapes are to be bagged. Sometimes, an envelope type bag is used, but the disadvantage of this method is that the vacuum pressure might crush the part. Reusable bags made from silicon rubber are available that are more flexible. Some have a built-in heater blanket that simplifies the bagging task. [Figures 7-35, 7-36, and 7-37] Vacuum Equipment A vacuum pump is used to evacuate air and volatiles from the vacuum bag so that atmospheric pressure consolidates the plies. A dedicated vacuum pump is used in a repair shop. For repairs on the aircraft, a mobile vacuum pump could be used. Most heat bonders have a built-in vacuum pump. Special air hoses are used as vacuum lines, because regular air hoses might collapse when a vacuum is applied. The vacuum lines that are used in the oven or autoclave need to be able to withstand the high temperatures in the heating device. A vacuum pressure regulator is sometimes used to lower the vacuum pressure during the bagging process. Vacuum Compaction Table A vacuum compaction table is a convenient tool for debulking composite layups with multiple plies. Essentially a reusable vacuum bag, a compaction table consists of a metal table surface with a hinged cover. The cover includes a solid frame, a flexible membrane, and a vacuum seal. Repair plies are laid up on the table surface and sealed beneath the cover with vacuum to remove entrapped air. Some compaction tables are heated but most are not. Heat Sources Oven Composite materials can be cured in ovens using various pressure application methods. [Figure 7-38] Typically, vacuum bagging is used to remove volatiles and trapped air and utilizes atmospheric pressure for consolidation. Another method of pressure application for oven cures is the use of shrink wrapping or shrink tape. The oven uses heated air circulated at high speed to cure the material system. Typical oven cure temperatures are 250 °F and 350 °F. Ovens have a temperature sensor to feed temperature data back to the oven controller. The oven temperature can differ from the actual part temperature depending upon the location of the oven sensor and the location of the part in the oven. The thermal mass of the part in the oven is generally greater than the surrounding oven and during rise to temperature, the part temperature can lag the oven temperature by a considerable amount. To deal with these differences, at least two thermocouples must be placed on the part and connected to a temperature-sensing device (separate chart recorder, hot bonder, etc.) located outside the oven. Some oven controllers can be controlled by thermocouples placed on the repair part. Figure 7-38. Walk-in curing oven. Autoclave An autoclave system allows a complex chemical reaction to occur inside a pressure vessel according to a specified time, temperature, and pressure profile in order to process a variety of materials. [Figure 7-39] The evolution of materials and processes has taken autoclave operating conditions from 120 °C (250 °F) and 275 kPa (40 psi) to well over 760 °C (1,400 °F) and 69,000 kPa (10,000 psi). Autoclaves that are operated at lower temperatures and pressures can be pressurized by air, but if higher temperatures and pressures are required for the cure cycle, a 50/50 mixture of air and nitrogen or 100 percent nitrogen should be used to reduce the change of an autoclave fire. The major elements of an autoclave system are a vessel to contain pressure, sources to heat the gas stream and circulate it uniformly within the vessel, a subsystem to apply vacuum to parts covered by a vacuum bag, a subsystem to control operating parameters, and a subsystem to load the molds into the autoclave. Modern autoclaves are computer controlled and the operator can write and monitor all types of cure cycle programs. The most accurate way to control the cure cycle is to control the autoclave controller with thermocouples that are placed on the actual part. Most parts processed in autoclaves are covered with a vacuum bag that is used primarily for compaction of laminates and to provide a path for removal of volatiles. The bag allows the part to be subjected to differential pressure in the autoclave without being directly exposed to the autoclave atmosphere. 7-22 Figure 7-39. Autoclave. The vacuum bag is also used to apply varying levels of vacuum to the part. Modern heat bonders can run many different types of cure programs and cure cycle data can be printed out or uploaded to a computer. [Figure 7-40] Heat Bonder & Heat Lamps Typical on-aircraft heating methods include electrical resistance heat blankets, infrared heat lamps, and hot air devices. All heating devices must be controlled by some means so that the correct amount of heat can be applied. This is particularly important for repairs using prepreg material and adhesives, because controlled heating and cooling rates are usually prescribed. Heat Bonder A heat bonder is a portable device that automatically controls heating based on temperature feedback from the repair area. Heat bonders also have a vacuum pump that supplies and monitors the vacuum in the vacuum bag. The heat bonder controls the cure cycle with thermocouples that are placed near the repair. Some repairs require up to 10 thermocouples. Figure 7-40. Heat bonder equipment. Heat Blanket A heat blanket is a flexible heater. It is made of two layers of silicon rubber with a metal resistance heater between the two layers of silicon. Heat blankets are a common method of applying heat for repairs on the aircraft. Heat blankets may be controlled manually; however, they are usually used in conjunction with a heat bonder. Heat is transferred from the blanket via conduction. Consequently, the heat blanket must conform to and be in 100 percent contact with the part, which is usually accomplished using vacuum bag pressure. [Figure 7-41] Heat Lamp Infrared heat lamps can also be used for elevated temperature curing of composites if a vacuum bag is not utilized. However, they are generally not effective for producing curing temperatures above 150 °F, or for areas larger than two square feet. It is also difficult to control the heat applied with a lamp, and lamps tend to generate high-surface temperatures Figure 7-41. Heat blankets. 7-23 quickly. If controlled by thermostats, heat lamps can be useful in applying curing heat to large or irregular surfaces. Heat bonders can be used to control heat lamps. Hot Air System Hot air systems can be used to cure composite repairs, and are mainly restricted to small repairs and for drying the repair area. A heat generator supplies hot air that is directed into an insulated enclosure set up around the repair area after vacuum bagging has been deployed. The hot air surrounds the repair for even temperature rise. Heat Press Forming During the press forming process, flat stacked thermoplastic prepreg is heated to above melt temperature (340–430 °C, or 645–805 °F) in an oven, rapidly (1–10 seconds) shuttled to a forming die, pressed to shape, and consolidated and cooled under pressure (700–7,000 kPa, or 100–1,000 psi). [Figure 7-42] In production, press forming dies usually are matched male-female sets constructed of steel or aluminum. However, rubber, wood, phenolics, and so on can be used during prototyping. The die set can be maintained at room temperature throughout the forming-consolidation cycle. But, the use of a hot die (120–200 °C, or 250–390 °F) allows control of the cooling-down rate (avoiding part warpage and controlling morphology in semicrystalline thermoplastic prepreg, such as PEEK and polyphenylene sulfide) and extends the forming window promoting better ply slip. The main disadvantage with this method is that the press only applies pressure in one direction, and hence, it is difficult to make complex-shaped (e.g., beads, closed corners) parts or parts with legs that approach vertical. Since the temperature of the die set need not be cycled with each part, rapid forming times of between 10 minutes and 2 hours are achievable with Figure 7-42. Heat press. press forming. Thermocouples A thermocouple (TC) is a thermoelectric device used to accurately measure temperatures. It may be connected to a simple temperature reading device, or connected to a hot bonder, oven, or other type of controller that regulates the amount of heat. TCs consist of a wire with two leads of dissimilar metals that are joined at one end. Heating the joint produces an electric current, which is converted to a temperature reading with a TC monitor. Select the type of wire (J or K) and the type of connector that are compatible with the local temperature monitoring equipment (hot bonder, oven, autoclave, etc.). TC wire is available with different types of insulation; check the manufacturer’s product data sheets to ensure the insulation withstands the highest cure temperature. Teflon-insulated wire is generally good for 390 °F and lower cures; Kapton-insulated wire should be used for higher temperatures. Thermocouple Placement Thermocouple placement is the key in obtaining proper cure temperatures throughout the repair. In general, the thermocouples used for temperature control should be placed as close as possible to the repair material without causing it to become embedded in the repair or producing indentations in the repair. They should also be placed in strategic hot or cold locations to ensure the materials are adequately cured but not exposed to excessively high temperatures that could degrade the material structural properties. The thermocouples should be placed as close as practical to the area that needs to be monitored. The following steps should be taken when using thermocouples: Never use fewer than three thermocouples to monitor a heating cycle. If bonding a precured patch, place the thermocouple near the center of the patch. A control thermocouple may be centered over a low-temperature (200 °F or lower) co-cured patch as long as it is placed on top of a thin metallic sheet to prevent a thermocouple indentation onto the patch. This may allow for a more accurate control of the patch temperature. The thermocouples installed around the perimeter of the repair patch should be placed approximately 0.5-inch away from the edge of the adhesive line. Place flash tape below and above the thermocouple tips to protect them from resin flash and to protect the control unit from electrical shorts. Do not place the thermocouple under the vacuum port as the pressure may damage the lead and cause 7-24 erroneous readings to occur. Do not place thermocouple wires adjacent to or crossing the heat blanket power cord to prevent erroneous temperature readings caused by magnetic flux lines. Do not place any control thermocouple beyond the heat blanket’s two-inch overlap of the repair to prevent the controller from trying to compensate for the lower temperature. Always leave slack in the thermocouple wire under the vacuum bag to prevent the thermocouple from being pulled away from the area to be monitored as vacuum is applied. Thermal Survey of Repair Area In order to achieve maximum structural bonded composite repair, it is essential to cure these materials within the recommended temperature range. Failure to cure at the correct temperatures can produce weak patches and/or bonding surfaces and can result in a repair failure during service. A thermal survey should be performed prior to installing the repair to ensure proper and uniform temperatures can be achieved. The thermal survey determines the heating and insulation requirements, as well as TC locations for the repair area. The thermal survey is especially useful for determining the methods of heating (hot air modules, heat lamps, heat blanket method and monitoring requirements in cases where heat sinks (substructure for instance) exist in the repair area). It should be performed for all types of heating methods to preclude insufficient, excessive, or uneven heating of the repair area. Temperature Variations in Repair Zone Thermal variations in the repair area occur for many reasons. Primary among these are material type, material thickness, and underlying structure in the repair zone. For these reasons, it is important to know the structural composition of the area to be repaired. Substructure existing in the repair zone conducts heat away from the repair area, resulting in a cold spot directly above the structure. Thin skins heat quickly and can easily be overheated. Thick skin sections absorb heat slowly and take longer to reach soak temperature. The thermal survey identifies these problem areas and allows the technician to develop the heat and insulation setup required for even heating of the repair area. Thermal Survey During the thermal survey process, try to determine possible hot and cold areas in the repair zone. Temporarily attach a patch of the same material and thickness, several thermal couples, heating blanket, and a vacuum bag to the repair area. Heat the area and, after the temperature is stabilized, record the thermocouple temperatures. Add insulation if the temperature of the thermocouple varies more than 10 degrees from average. The areas with a stringer and rib indicate a lower temperature than the middle of the patch because they act as a heat sink. Add insulation to these areas to increase the temperature. [Figure 7-43] Solutions to Heat Sink Problems Additional insulation can be placed over the repair area. This insulation can also be extended beyond the repair area to minimize heat being conducted away. Breather materials and fiberglass cloths work well, either on top of the vacuum bag or within the vacuum bag or on the accessible backside of the structure. Place more insulation over cool spots and less insulation over hot spots. If access is available to the backside of the repair area, additional heat blankets could be placed there to heat the repair area more evenly. Types of Layups Wet Layups During the wet layup process, a dry fabric is impregnated with a resin. Mix the resin system just before making the repair. Lay out the repair plies on a piece of fabric and impregnate the fabric with the resin. After the fabric is impregnated, cut the repair plies, stack in the correct ply orientation, and vacuum bag. Wet layup repairs are often used with fiberglass for nonstructural applications. Carbon and Kevlar® dry fabric could also be used with a wet layup resin system. Many resin systems used with wet layup cure at room temperature, are easy to accomplish, and the materials can be stored at room temperature for long period of times. The disadvantage of room temperature wet layup is that it does not restore the strength and durability of the original structure and parts that were cured at 250 °F or 350 °F during manufacturing. Some wet layup resins use an elevated temperature cure and have improved properties. In general, wet layup properties are less than properties of prepreg material. Epoxy resins may require refrigeration until they are used. This prevents the aging of the epoxy. The label on the container states the correct storage temperature for each component. The typical storage temperature is between 40 °F and 80 °F for most epoxy resins. Some resin systems require storage below 40 °F. Prepreg Prepreg is a fabric or tape that is impregnated with a resin during the manufacturing process. The resin system is already mixed and is in the B stage cure. Store the prepreg material in a freezer below 0 °F to prevent further curing of the resin. The material is typically placed on a roll and a backing material is placed on one side of the material so that the prepreg does not stick together. The prepreg material is 7-25 Bonded stringer 300 °F Temperature Dwell 2-INCH MIN 240° Patch perimeter Constant-wattdensity heat blanket 290° 2-INCH MIN 300° 260° 250° Rib 280° 200° 200° Insulate due to rib heat sink Figure 7-43. Thermal survey example. sticky and adheres to other plies easily during the stack-up process. You must remove the prepreg from the freezer and let the material thaw, which might take 8 hours for a full roll. Store the prepreg materials in a sealed, moisture proof bag. Do not open these bags until the material is completely thawed, to prevent contamination of the material by moisture. After the material is thawed and removed from the backing material, cut it in repair plies, stack in the correct ply orientation, and vacuum bag. Do not forget to remove the backing material when stacking the plies. Cure prepregs at an elevated cure cycle; the most common temperatures used are 250 °F and 350 °F. Autoclaves, curing ovens, and heat bonders can be used to cure the prepreg material. Consolidation is necessary if parts are made from several layers of prepreg, because large quantities of air can be trapped between each prepreg layer. Remove this trapped air by covering the prepreg with a perforated release film and a breather ply, and apply a vacuum bag. Apply the vacuum for 10 to 15 minutes at room temperature. Typically, attach the first consolidated ply to the tool face and repeat this process after every 3 or 5 layers depending on the prepreg thickness and component shape. Store prepreg, film adhesive, and foaming adhesives in a freezer at a temperature below 0 °F. If these types of materials need to be shipped, place them in special containers filled with dry ice. The freezer must not be of the automatic defrost type; the auto-defrost cycle periodically warms the inside of the freezer, which can reduce the shelf life and consume the allowable out-time of the composite material. Freezers must be capable of maintaining 0 °F or below; most household freezers meet this level. Walk-in freezers can be used for large volume cold storage. If usage is small, a chest-type freezer may suffice. Refrigerators are used to store laminating and paste adhesives and should be kept near 40 °F. [Figure 7-44] Uncured prepreg materials have time limits for storage and use. [Figure 7-45] The maximum time allowed for storing of a prepreg at low temperature is called the storage life, which is typically 6 months to a year. The material can be tested, and the storage life could be extended by the material manufacturer. The maximum time allowed for material at room temperature before the material cures is called the mechanical life. The recommended time at room temperature to complete layup and compaction is called the handling life. The handling life is shorter than the mechanical life. The mechanical life is measured from the time the material is removed from the freezer until the time the material is returned to the freezer. The operator must keep records of 7-26 temperature environment and bring them to the repair area immediately before using them. Co-curing Co-curing is a process wherein two parts are simultaneously cured. The interface between the two parts may or may not have an adhesive layer. Co-curing often results in poor panel surface quality, which is prevented by using a secondary surfacing material co-cured in the standard cure cycle or a subsequent fill-and-fair operation. Co-cured skins may also have poorer mechanical properties, requiring the use of reduced design values. Figure 7-44. Walk-in freezer for storing prepreg materials. Mechanical life Storage life Recommended handling life Shipment date Removed from refrigeration A typical co-cure application is the simultaneous cure of a stiffener and a skin. Adhesive film is frequently placed into the interface between the stiffener and the skin to increase fatigue and peel resistance. Principal advantages derived from the co-cure process are excellent fit between bonded components and guaranteed surface cleanliness. Secondary Bonding Complete layup Begin cure Figure 7-45. Storage life for prepreg materials. the time in and out of the freezer. Material that exceeds the mechanical life needs to be discarded. Many repair facilities cut the material in smaller kits and store them in moisture-proof bags that thaw quicker when removed from the freezer. This also limits the time out of the freezer for a big roll. All frozen prepreg materials need to be stored in moistureproof bag to avoid moisture contamination. All prepreg material should be protected from dust, oil, vapors, smoke, and other contaminants. A clean room for repair layup would be best, but if a clean room is not available, the prepreg should be protected by storing them in bags or keeping them covered with plastic. Before starting the layup, cover the unprotected sides of the prepreg with parting film, and clean the area being repaired immediately before laying up the repair plies. Prepreg material is temperature sensitive. Excessively high temperatures cause the material to begin curing, and excessively low temperatures make the material difficult to handle. For repairs on aircraft in very cold or very hot climates, the area should be protected by a tent around the repair area. Prepare the prepreg repair plies in a controlled- Secondary bonding utilizes precured composite detail parts, and uses a layer of adhesive to bond two precured composite parts. Honeycomb sandwich assemblies commonly use a secondary bonding process to ensure optimal structural performance. Laminates co-cured over honeycomb core may have distorted plies that have dipped into the core cells. As a result, compressive stiffness and strength can be reduced as much as 10 and 20 percent, respectively. Precured laminates undergoing secondary bonding usually have a thin nylon or fiberglass peel ply cured onto the bonding surfaces. While the peel ply sometimes hampers nondestructive inspection of the precured laminate, it has been found to be the most effective means of ensuring surface cleanliness prior to bonding. When the peel ply is stripped away, a pristine surface becomes available. Light scuff sanding removes high resin peak impressions produced by the peel ply weave which, if they fracture, create cracks in the bondline. Composite materials can be used to structurally repair, restore, or enhance aluminum, steel, and titanium components. Bonded composite doublers have the ability to slow or stop fatigue crack growth, replace lost structural area due to corrosion grind-outs, and structurally enhance areas with small and negative margins. This technology has often been referred to as a combination of metal bonding and conventional on-aircraft composite bonded repair. Boron prepreg tape with an epoxy resin is most often used for this application. 7-27 Co-bonding In the co-bonding process, one of the detail parts is precured with the mating part being cured simultaneously with the adhesive. Film adhesive is often used to improve peel strength. Layup Process (Typical Laminated Wet Layup) Layup Techniques Read the SRM and determine the correct repair material, number of plies required for the repair, and the ply orientation. Dry the part, remove the damage, and taper sand the edges of damaged area. Use a piece of thin plastic, and trace the size of each repair ply from the damaged area. Indicate the ply orientation of each ply on the trace sheet. Copy the repair ply information to a piece of repair material that is large enough to cut all plies. Impregnate the repair material with resin, place a piece of transparent release film over the fabric, cut out the plies, and lay up the plies in the damaged area. The plies are usually placed using the smallest ply first taper layup sequence, but an alternative method is to use the largest ply first layup sequence. In this sequence, the first layer of reinforcing fabric completely covers the work area, followed by successively smaller layers, and then is finished with an extra outer layer or two extending over the patch and onto the sound laminate for some distance. Both methods are illustrated in Figures 7-46 and 7-47. Bleedout Technique The traditional bleedout using a vacuum bag technique places a perforated release film and a breather/bleeder ply on top of the repair. The holes in the release film allow air to breath and resin to bleed off over the entire repair area. The amount of resin bled off depends on the size and number of holes Ply locating template Taper sanded repair Part zero direction F.P. P1 0 Repair plies Figure 7-46. Repair layup process. P2 45 P3 0 P EXTRA 0 Warp Figure 7-47. Different layup techniques. in the perforated release film, the thickness of the bleeder/ breather cloth, the resin viscosity and temperature, and the vacuum pressure. Controlled bleed allows a limited amount of resin to bleed out in a bleeder ply. Place a piece of perforated release film on top of the prepreg material, a bleeder ply on top of the perforated release film, and a solid release film on top of the bleeder. Use a breather and a vacuum bag to compact the repair. The breather allows the air to escape. The bleeder can only absorb a limited amount of resin, and the amount of resin that is bled can be controlled by using multiple bleeder plies. Too many bleeder plies can result in a resin-starved repair. Always consult the maintenance manual or manufacturer tech sheets for correct bagging and bleeding techniques. No Bleedout Prepreg systems with 32 to 35 percent resin content are typically no-bleed systems. These prepregs contain exactly the amount of resin needed in the cured laminate; therefore, resin bleedoff is not desired. Bleedout of these prepregs results in a resin-starved repair or part. Many high-strength prepregs in use today are no-bleed systems. No bleeder is used, and the resin is trapped/sealed so that none bleeds away. Consult the maintenance manual to determine if bleeder plies are required for the repair. A sheet of solid release film (no holes) is placed on top of the prepreg and taped off at the edges with flash tape. Small openings are created at the edges of the tape so that air can escape. A breather and vacuum bag are installed to compact the prepreg plies. The air can escape on the edge of the repair but no resin can bleed out. [Figure 7-48] Horizontal (or edge) bleedout is used for small room temperature wet layup repairs. A 2-inch strip of breather cloth is placed around the repair or part (edge breather). There is no need for a release film because there is no bleeder/breather 7-28 Type Example Comments Symmetrical, balanced (+45, –45, 0, 0, –45, +45) Flat, constant midplane stress Nonsymmetrical, balanced (90, +45, 0, 90, –45, 0) Induces curvature Symmetrical, nonbalanced (–45, 0, 0, –45) Induces twist Nonsymmetrical, nonbalanced (90, –45, 0, 90, –45, 0) Induces twist and curvature Figure 7-50. Examples of the effects caused by nonsymmetrical laminates. Figure 7-48. Vacuum bagging of contoured part. cloth on top of the repair. The part is impregnated with resin, and the vacuum bag is placed over the repair. A vacuum is applied and a squeegee is used to remove air and excess resin to the edge breather. of the plies to the applied load. Because the strength design requirement is a function of the applied load direction, ply orientation and ply sequence must be correct. It is critical during a repair operation to replace each damaged ply with a ply of the same material and orientation or an approved substitute. Ply Orientation Warp Clock In order to minimize any residual thermal stresses caused during cure of the resin, it is always good practice to design a symmetrical, or balanced, laminate. Examples of balance laminates are presented in Figure 7-49. The first example uses unidirectional tape, and examples 2 and 3 are typical quasi-isotropic laminates fabricated from woven cloth. Figure 7-50 presents examples of the effects caused by nonsymmetrical laminates. These effects are most pronounced in laminates that are cured at high temperature in an autoclave or oven due to the thermal stresses developed in the laminate as the laminate cools down from the cure temperature to room temperature. Laminates cured at room temperature using typical wet layup do not exhibit the same degree of distortion due to the much smaller thermal stresses. The strength and stiffness of a composite buildup depends on the ply orientation. The practical range of strength and stiffness of carbon epoxy extends from values as low as those provided by fiberglass to as high as those provided by titanium. This range of values is determined by the orientation Example Lamina Written as 1 ±45°, –45°, 0°, 0°, –45°, +45° (+45, –45, 0) S 2 ±45°, 0°/90°, ±45°, 0°/90°, 0°/90°, ±45°, 0°/90°, ±45° (±45, 0/90)2S 3 ±45°, ±45°, 0°/90°, 0°/90°, ±45°, ±45° ([±45] 2, 0/90) S Figure 7-49. Examples of balance laminates. Warp is the longitudinal fibers of a fabric. The warp is the high-strength direction due to the straightness of the fibers. A warp clock is used to describe direction of fibers on a diagram, spec sheet, or manufacturer’s sheets. If the warp clock is not available on the fabric, the orientation is defaulted to zero as the fabric comes off the roll. Therefore, 90° to zero is across the width of the fabric. 90° to zero is also called the fill direction. Mixing Resins Epoxy resins, like all multipart materials, must be thoroughly mixed. Some resin systems have a dye added to aid in seeing how well the material is mixed. Since many resin systems do not have a dye, the resin must be mixed slowly and fully for three minutes. Air enters into the mixture if the resin is mixed too fast. If the resin system is not fully mixed, the resin may not cure properly. Make sure to scrape the edges and bottom of the mixing cup to ensure that all resin is mixed correctly. Do not mix large quantities of quick curing resin. These types of resins produce heat after they are mixed. Smoke can burn or poison you when the resin overheats. Mix only the amount of material that is required. Mix more than one batch if more material is needed than the maximum batch size. Saturation Techniques For wet layup repair, impregnate the fabric with resin. It is important to put the right amount of resin on the fabric. Too much or too little resin affects the strength of the repair. Air that is put into the resin or not removed from the fabric also reduces the repair strength. 7-29 Figure 7-51. Fabric impregnation with a brush or squeegee: A) wet layup materials; B) fabric placement; C) fabric impregnation; D) squeegee used to thoroughly wet the fabric. Fabric Impregnation With a Brush or Squeegee The traditional way of impregnating the fabric is by using a brush or squeegee. The technician puts a mold release compound or a release film on a caul plate so that the plies will not adhere to the caul plate. Place a sheet of fabric on the caul plate and apply resin in the middle of the sheet. Use a brush or squeegee to thoroughly wet the fabric. More plies of fabric and resin are added and the process is repeated until all plies are impregnated. A vacuum bag will be used to consolidate the plies and to bleed off excess resin and volatiles. Most wet layup processes have a room temperature cure but extra heat, up to 150 °F, are used to speed up the curing process. [Figure 7-51] reduces the level of entrapped air within the fabric and offers a more controlled and contained configuration for completing the impregnation process. Vacuum-assisted impregnation consists of the following steps: 1. Place vacuum bag sealing tape on the table surface around the area that is used to impregnate the material. The area should be at least 4 inches larger than the material to be impregnated. 2. Place an edge breather cloth next to the vacuum bag sealing tape. The edge breather should be 1–2 inches wide. 3. Place a piece of solid parting film on the table. The sheet should be 2-inches larger than the material to be impregnated. 4. Weigh the fabric to find the amount of resin mix that is necessary to impregnate the material. 5. Lay the fabric on the parting film. Fabric Impregnation Using a Vacuum Bag The vacuum-assisted impregnation method is used to impregnate repair fabric with a two-part resin while enclosed inside a vacuum bag. This method is preferred for tightknit weaves and when near optimum resin-to-fiber ratio is required. Compared to squeegee impregnation, this process 7-30 6. Put a piece of breather material between the fabric and the edge breather to provide an air path. 7. Pour the resin onto the fabric. The resin should be a continuous pool in the center area of the fabric. 8. Put vacuum probes on the edge breather. 9. Place a second piece of solid parting film over the fabric. This film should be the same size or larger than the first piece. 10. Place and seal the vacuum bag, and apply vacuum to the bag. 11. Allow 2 minutes for the air to be removed from the fabric. 12. Sweep the resin into the fabric with a squeegee. Slowly sweep the resin from the center to the edge of the fabric. The resin should be uniformly distributed over all of the fabric. 13. Remove the fabric and cut the repair plies. Vacuum Bagging Techniques Vacuum bag molding is a process in which the layup is cured under pressure generated by drawing a vacuum in the space between the layup and a flexible sheet placed over it and sealed at the edges. In the vacuum bag molding process, the plies are generally placed in the mold by hand layup using prepreg or wet layup. High-flow resins are preferred for vacuum bag molding. Single Side Vacuum Bagging This is the preferred method if the repair part is large enough for a vacuum bag on one side of the repair. The vacuum bag is taped in place with tacky tape and a vacuum port is placed through the bag to create the vacuum. Envelope Bagging Envelope bagging is a process in which the part to be repaired is completely enclosed in a vacuum bag or the bag is wrapped around the end of the component to obtain an adequate seal. It is frequently used for removable aircraft parts, such as flight controls, access panels, etc., and when a part’s geometry and/or the repair location makes it very difficult to properly vacuum bag and seal the area in a vacuum. In some cases, a part may be too small to allow installation of a single-side bag vacuum. Other times, the repair is located on the end of a large component that must have a vacuum bag wrapped around the ends and sealed all the way around. [Figure 7-52] Alternate Pressure Application Shrink Tape Another method of pressure application for oven cures is the use of shrink wrapping or shrink tape. This method is Figure 7-52. Envelope bagging of repair. commonly used with parts that have been filament wound, because some of the same rules for application apply. The tape is wrapped around the completed layup, usually with only a layer of release material between the tape and the layup. Heat is applied to the tape, usually using a heat gun to make the tape shrink, a process that can apply a tremendous amount of pressure to the layup. After shrinking, the part is placed in the oven for cure. High quality parts can be made inexpensively using shrink tape. C-Clamps Parts can also be pressed together with clamps. This technique is used for solid laminate edges of honeycomb panels. Clamps (e.g., C-clamps and spring clamps) are used for pressing together the edges of components and/or repair details. Always use clamps with pressure distribution pads because damage to the part may occur if the clamping force is too high. Spring clamps can be used in applications where resin squeeze-out during cure would require C-clamps to be retightened periodically. Shotbags & Weights Shotbags and weights can be used also to provide pressure, but their use is limited due to the low level of pressure imposed. Curing of Composite Materials A cure cycle is the time/temperature/pressure cycle used to cure a thermosetting resin system or prepreg. The curing of a repair is as important as the curing of the original part material. Unlike metal repairs in which the materials are premanufactured, composite repairs require the technician to manufacture the material. This includes all storage, processing, and quality control functions. An aircraft repair’s 7-31 cure cycle starts with material storage. Materials that are stored incorrectly can begin to cure before they are used for a repair. All time and temperature requirements must be met and documented. Consult the aircraft structural repair manual to determine the correct cure cycle for the part that needs to be repaired. Room Temperature Curing Room temperature curing is the most advantageous in terms of energy savings and portability. Room temperature cure wet layup repairs do not restore either the strength or the durability of the original 250 °F or 350 °F cure components and are often used for wet layup fiberglass repairs for noncritical components. Room temperature cure repairs can be accelerated by the application of heat. Maximum properties are achieved at 150 °F. A vacuum bag can be used to consolidate the plies and to provide a path for air and volatiles to escape. Elevated Temperature Curing All prepreg materials are cured with an elevated temperature cure cycle. Some wet layup repairs use an elevated cure cycle as well to increase repair strength and to speed up the curing process. The curing oven and heat bonder uses a vacuum bag to consolidate the plies and to provide a path for air and volatiles to escape. The autoclave uses vacuum and positive pressure to consolidate the plies and to provide a path for air and volatiles to escape. Most heating devices use a programmable computer control to run the cure cycles. The operator can select from a menu of available cure cycles or write their own program. Thermocouples are placed near the repair, and they provide temperature feedback for the Hold for 120–180 minutes at 355 °F ±10 °F (179 °C ±6 °C) 350 177 250 121 Decrease the temperature at a maximum rate of 5 °F (3 °C) for each minute. Increase the temperature at a rate of 1–5 °F (0.5–3 °C) for each minute. 150 Temperature (°C) Temperature (°F) The cure time starts when the last thermocouple is in the specified cure temperature range. 66 Heat-up rate starts at 130 °F (54 °C) Below 125 °F (52 °C), release the pressure and remove the layup and vacuum bag materials from the part and tool. NO SCALE Pressure PSIG 60 70 21 Time 30 Pressure = 40–50 PSIG (275 KPa to 645 KPa gauge) for autoclave cure only 0 Apply heat to the repair after the autoclave is pressurized. Note: For the oven cure, keep a minimum vacuum of 22 inches mercury (22 "Hg) during the full cure cycle. Open the vacuum bag to the atmosphere after the pressure in the autoclave is above 20 PSIG (138 KPa gauge). Figure 7-53. Autoclave cure. 7-32 External Internal Scarf Patch Adhesive Composite skin Core Core splice adhesive Repair core Repair plug Figure 7-54. Typical repairs for honeycomb sandwich structure. heating device. Typical curing temperature for composite materials is 250 °F or 350 °F. The temperature of large parts that are cured in an oven or autoclave might be different from that of an oven or autoclave during the cure cycle, because they act like a heat sink. The part temperature is most important for a correct cure, so thermocouples are placed on the part to monitor and control part temperature. The oven or autoclave air temperature probe that measures oven or autoclave temperature is not always a reliable device to determine part curing temperature. The oven temperature and the part temperature can be substantially different if the part or tool acts as a heat sink. The elevated cure cycle consists of at least three segments: Ramp up: The heating device ramps up at a set temperature typically between 3 °F to 5 °F per minute. RT Hold or soak: The heating device maintains the temperature for a predetermined period. Cool down: The heating device cools down at a set temperature. Cool down temperatures are typically below 5 °F per minute. When the heating device is below 125 °F, the part can be removed. When an autoclave is used for curing parts, make sure that the pressure in the autoclave is relieved before the door is opened. [Figure 7-53] The curing process is accomplished by the application of heat and pressure to the laminate. The resin begins to soften and flow as the temperature is increased. At lower temperatures, very little reaction occurs. Any volatile contaminants, such as air and/or water, are drawn out of the laminate with vacuum during this time. The laminate is compacted by applying pressure, usually vacuum (atmospheric pressure); autoclaves apply additional pressure, typically 50–100 psi. As the temperature approaches the final cure temperature, the rate of reaction greatly increases, and the resin begins to gel and harden. The hold at the final cure lets the resin finish curing and attain the desired structural properties. Composite Honeycomb Sandwich Repairs A large proportion of current aerospace composite components are light sandwich structures that are susceptible to damage and are easily damaged. Because sandwich structure is a bonded construction and the face sheets are thin, damage to sandwich structure is usually repaired by bonding. Repairs to sandwich honeycomb structure use similar techniques for the most common types of face sheet materials, such as fiberglass, carbon, and Kevlar®. Kevlar® is often repaired with fiberglass. [Figure 7-54] Damage Classification A temporary repair meets the strength requirements, but is limited by time or flight cycles. At the end of the repair’s life, the repair must be removed and replaced. An interim repair Y 08 LIBE 20 Coin tap test Instrumented tap test Tap test with tap hammer Figure 7-55. Tap testing techniques. 7-33 the required strength and durability to the component. The repair has the same inspection method and interval as the original component. PRESSURE I0 Breather cloth Heat blanket Breather cloth Thermocouple Repair area Figure 7-56. Vacuum bag method for drying parts. restores the required strength to the component. However, this repair does not restore the required durability to the component. Therefore, it has a different inspection interval and/or method. A permanent repair is a repair that restores Sandwich Structures Minor Core Damage (Filler & Potting Repairs) A potted repair can be used to repair damage to a sandwich honeycomb structure that is smaller than 0.5 inch. The honeycomb material could be left in place or could be removed and is filled up with a potting compound to restore some strength. Potted repairs do not restore the full strength of the part. Potting compounds are most often epoxy resins filled with hollow glass, phenolic or plastic microballoons, cotton, flox, or other materials. The potting compound can also be used as filler for cosmetic repairs to edges and skin panels. Potting compounds are also used in sandwich honeycomb panels as hard points for bolts and screws. The potting compound is heavier than the original core and this could affect flight control balance. The weight of the repair must be calculated and compared with flight control weight and balance limits set out in the SRM. 0.50 inch minimum Partial depth core replacement Full depth core replacement Figure 7-57. Core damage removal. 7-34 existing ply of the face sheet. Remove the exterior finish, including conductive coating for an area that is at least 1 inch larger than the border of the taper. Remove all sanding dust with dry compressed air and a vacuum cleaner. Use a clean cloth moistened with approved solvent to clean the damaged area. [Figure 7-58] Step 5: Installation of Honeycomb Core (Wet Layup) Use a knife to cut the replacement core. The core plug must be of the same type, class, and grade of the original core. The direction of the core cells should line up with the honey comb of the surrounding material. The plug must be trimmed to the right length and be solvent washed with an approved cleaner. Figure 7-58. Taper sanding of repair area. Damage Requiring Core Replacement & Repair to One or Both Faceplates Note: the following steps are not a substitution for the aircraft specific Structural Repair Manual (SRM). Do not assume that the repair methods used by one manufacturer are applicable to another manufacturer. Step 1: Inspect the Damage Thin laminates can be visually inspected and tap tested to map out the damage. [Figure 7-55] Thicker laminates need more in-depth NDI methods, such as ultrasonic inspection. Check in the vicinity of the damage for entry of water, oil, fuel, dirt, or other foreign matter. Water can be detected with X-ray, back light, or a moisture detector. Step 2: Remove Water From Damaged Area Water needs to be removed from the core before the part is repaired. [Figure 7-56] If the water is not removed, it boils during the elevated temperature cure cycle and the face sheets blow off the core, resulting in more damage. Water in the honeycomb core could also freeze at the low temperatures that exist at high altitudes, which could result in disbonding of the face sheets. Step 3: Remove the Damage Trim out the damage to the face sheet to a smooth shape with rounded corners, or a circular or oval shape. Do not damage the undamaged plies, core, or surrounding material. If the core is damaged as well, remove the core by trimming to the same outline as the skin. [Figure 7-57] Step 4: Prepare the Damaged Area Use a flexible disc sander or a rotating pad sander to taper sand a uniform taper around the cleaned up damage. Some manufacturers give a taper ratio, such as 1:40, and others prescribe a taper distance like a 1-inch overlap for each For a wet layup repair, cut two plies of woven fabric that fit on the inside surface of the undamaged skin. Impregnate the fabric plies with a resin and place in the hole. Use potting compound around the core and place it in the hole. For a prepreg repair, cut a piece of film adhesive that fits the hole and use a foaming adhesive around the plug. The plug should touch the sides of the hole. Line up the cells of the plug with Replacement core plug Adhesive** Fabric prepreg Adhesive film* * BMS 5-154, Grade 5 or two plies of Grade 3 ** BMS 5-90, Type III, Class 1, Grade 50, or BMS 5-90, Type IV Section Through Repair Area Partial Depth Core Replacement Section A-A Replacement core plug Adhesive** Adhesive film* * BMS 5-154, Grade 5 ** BMS 5-90, Type III, Class 1, Grade 50, or BMS 5-90, Type IV Section Through Repair Area Full Depth Core Replacement Section B-B Figure 7-59. Core replacement. 7-35 Nonstructural sanding ply (adhesive film or fiberglass prepreg) Orient repair plies in same direction as original layers Extra ply Prepreg plies Determine number of plies, orientation, and material from skin identification 0.50 overlap (typical) Adhesive film Core replacement* B Foaming adhesive BMS 5-90, Type III, Class 1, Grade 50, or BMS 5-90, Type IV A Aeraded area. Do not damage fibers. Taper sanded area A B Masking tape (remove after sanding) *Butt splicing shown. Figure 7-60. Repair ply installation. Vacuum gauge 4 6 PRESSURE S 2 8 0 I0 Vacuum probe Vacuum bag material Breather material Vacuum bag sealing compound Heat blanket Caul plate Solid parting film Bleeder material Repair Perforated parting film Figure 7-61. Vacuum processing. the original material. Vacuum bag the repair area and use an oven, autoclave, or heat blanket to cure the core replacement. The wet layup repair can be cured at a room temperature up to 150 °F. The prepreg repair must be cured at 250 °F or 350 °F. Usually, the core replacement is cured with a separate curing cycle and not co-cured with the patch. The plug must be sanded flush with the surrounding area after the cure. [Figure 7-59] Step 6: Prepare & Install the Repair Plies Consult the repair manual for the correct repair material and the number of plies required for the repair. Typically, one more ply than the original number of plies is installed. Cut the plies to the correct size and ply orientation. The repair plies must be installed with the same orientation as that of the original plies being repaired. Impregnate the plies with resin for the wet layup repair, or remove the backing material from the prepreg material. The plies are usually placed using the smallest ply first taper layup sequence. [Figure 7-60] Step 7: Vacuum Bag the Repair Once the ply materials are in place, vacuum bagging is used to remove air and to pressurize the repair for curing. Refer to Figure 7-61 for bagging instructions. Step 8: Curing the Repair The repair is cured at the required cure cycle. Wet layup repairs can be cured at room temperature. An elevated temperature up to 150 °F can be used to speed up the cure. 7-36 250 Soak 121 Decrease the temperature 5 °F/minute (3 °C/minute) maximum 175 80 Ramp up Ramp down 100 Temperature (°C) Temperature (°F) Increase the temperature 2 °F to 5 °F (0.5 °C to 3 °C) per minute Hold for 90 to 150 minutes at 260 °F + 6 °F (126 °C + 6 °C) 38 Below 125 °F (52 °C) release the pressure and remove the layup and vacuum bag materials NO SCALE 70 21 Time Note: Keep a minimum vacuum of 22 inches of mercury during the cure cycle. Figure 7-62. Curing the repair. The prepreg repair needs to be cured at an elevated cure cycle. [Figure 7-62] Parts that can be removed from the aircraft could be cured in a hot room, oven, or autoclave. A heating blanket is used for on-aircraft repairs. Heat affected area Remove the bagging materials after curing and inspect the repair. The repair should be free from pits, blisters, resinrich and resin-starved areas. Lightly sand the repair patch to produce a smooth finish without damaging the fibers. Apply top finish and conductive coating (lightning protection). Step 9: Post Repair Inspection Use visual, tap, and/or ultrasonic inspection to inspect the repair. Remove the repair patch if defects are found. [Figure 7-63] Perform a balance check if a repair to a flight control surface was made, and ensure that the repaired flight control is within limits of the SRM. Failure to do so could result in flight control flutter, and safety of flight could be affected. Repair Heat blanket area Figure 7-63. Post-repair inspection. 7-37 Solid Laminates Bonded Flush Patch Repairs New generation aircraft have fuselage and wing structures made from solid laminates that are externally stiffened with co-cured or co-bonded stringers. These solid laminates have many more plies than the face sheets of honeycomb sandwich structures. The flush repair techniques for solid laminate structures are similar for fiberglass, Kevlar®, and graphite with minor differences. A flush repair can be stepped or, more commonly, scarved (tapered). The scarf angles are usually small to ease the load into the joint and to prevent the adhesive from escaping. This translates into thickness-to-length ratios of 1:10 to 1:70. Because inspection of bonded repairs is difficult, bonded repairs, as contrasted with bolted repairs, require a higher commitment to quality control, better trained personnel, and cleanliness. The scarf joint is more efficient from the viewpoint of load transfer as it reduces load eccentricity by closely aligning the neutral axis of the parent and the patch. However, this configuration has many drawbacks in making the repair. First, to maintain a small taper angle, a large quantity of sound material must be removed. Second, the replacement plies must be very accurately laid up and placed in the repair joint. Third, curing of replacement plies can result in significantly reduced strength if not cured in the autoclave. Fourth, the adhesive can run to the bottom of the joint, creating a nonuniform bond line. This can be alleviated by approximating the scarf with a series of small steps. For these reasons, unless the part is lightly loaded, this type of repair is usually performed at a repair facility where the part can be inserted into the autoclave, which can result in part strength as strong as the original part. There are several different repair methods for solid laminates. The patch can be precured and then secondarily bonded to the parent material. This procedure most closely approximates the bolted repair. [Figure 7-64] The patch can be made from prepreg and then co-cured at the same time as the adhesive. The patch can also be made using a wet layup repair. The curing cycle can also vary in length of time, cure temperature, and cure pressure, increasing the number of possible repair combinations. Scarf repairs of composite laminates are performed in the sequence of steps described below. Step 1: Inspection & Mapping of Damage The size and depth of damage to be repaired must be accurately surveyed using appropriate nondestructive evaluation (NDE) techniques. A variety of NDE techniques can be used to Adhesive Repair plies Laminate Figure 7-64. A precured patch can be secondarily bound to the parent material. inspect for damage in composite structures. The simplest technique is visual inspection, in which whitening due to delamination and/or resin cracking can be used to indicate the damage area in semitransparent composites, such as glass-polyester and glass-vinyl ester laminates. Visual inspection is not an accurate technique because not all damage is detectable to the eye, particularly damage hidden by paint, damage located deep below the surface, and damage in nontransparent composites, such as carbon and aramid laminates. A popular technique is tap testing, in which a lightweight object, such as a coin or hammer, is used to locate damage. The main benefits of tap testing are that it is simple and it can be used to rapidly inspect large areas. Tap testing can usually be used to detect delamination damage close to the surface, but becomes increasingly less reliable the deeper the delamination is located below the surface. Tap testing is not useful for detecting other types of damage, such as resin cracks and broken fibers. More advanced NDE techniques for inspecting composites are impedance testing, x-ray radiography, thermography, and ultrasonics. Of these techniques, ultrasonics is arguably the most accurate and practical and is often used for surveying damage. Ultrasonics can be used to detect small delaminations located deep below the surface, unlike visual inspection and tap testing. Step 2: Removal of Damaged Material Once the scope of the damaged area to be repaired has been determined, the damaged laminate must be removed. The edges of the sound laminate are then tapered back to a shallow angle. The taper slope ratio, also known as the scarf angle, should be less than 12 to 1 (< 5°) to minimize the shear strains along the bond line after the repair patch is applied. The shallow angle also compensates for some errors in workmanship and other shop variables that might diminish patch adhesion. [Figure 7-65] 7-38 Sanding disk holder Nonstructural sanding ply (adhesive film or fiberglass prepreg) Scarf outline periphery Extra repair ply Sanding disk Third repair ply Finished scarf slope Second repair ply Initially, machine scarf to a knife’s edge steeper than required. First repair ply Scarf outline periphery Adhesive film Taper sand Finished scarf slope Continue working scarf back to scarf outline dimension. Figure 7-65. Scarf patch of solid laminate. Step 3: Surface Preparation The laminate close to the scarf zone should be lightly abraded with sandpaper, followed by the removal of dust and contaminates. It is recommended that, if the scarf zone has been exposed to the environment for any considerable period of time, it should be cleaned with a solvent to remove contamination. Step 4: Molding A rigid backing plate having the original profile of the composite structure is needed to ensure the repair has the same geometry as the surrounding structure. Step 5: Laminating Laminated repairs are usually done using the smallest ply-first taper sequence. While this repair is acceptable, it produces relatively weak, resin-rich areas at each ply edge at the repair interface. The largest ply first laminate sequence, where the first layer of reinforcing fabric completely covers the work area, produces a stronger interface joint. Follow the manufacturer’s SRM instructions. Selection of the reinforcing material is critical to ensuring the repair has acceptable mechanical performance. The reinforcing fabric or tape should be identical to the reinforcement material used in the original composite. Also, the fiber orientation of the reinforcing layers within the repair laminate should match those of the original part laminate, so that the mechanical properties of the repair are as close to original as possible. Masking tape (3.0 to 4.0 wide) Figure 7-66. Trailing edge repair. Step 6: Finishing After the patch has cured, a conducting mesh and finish coat should be applied if needed. Trailing Edge & Transition Area Patch Repairs Trailing edges of control panels are highly vulnerable to damage. The aft 4 inches are especially subject to ground collision and handling, as well as to lightning strike. Repairs in this region can be difficult because both the skins and the trailing edge reinforcement may be involved. The repairs to a honeycomb core on a damaged edge or panel are similar to the repair of a sandwich honeycomb structure discussed in the Damage Requiring Core Replacement and Repair to One or Both Faceplate Repair sections. Investigate the damage, remove damaged plies and core, dry the part, install new core, layup the repair plies, curing and post inspection. A typical trail edge repair is shown in Figure 7-66. Resin Injection Repairs Resin injection repairs are used on lightly loaded structures for small damages to a solid laminate due to delamination. Two holes are drilled on the outside of the delamination area and a low-viscosity resin is injected in one hole until it flows out the other hole. Resin injection repairs are sometimes used on sandwich honeycomb structure to repair a facesheet disbond. Disadvantages of the resin injection method are that the fibers are cut as a result of drilling holes, it is difficult to remove moisture from the damaged area, and it is difficult to achieve complete infusion of resin. [Figure 7-67] 7-39 Composite Patch Bonded to Aluminum Structure Composite materials can be used to structurally repair, restore, or enhance aluminum, steel, and titanium components. Bonded composite doublers have the ability to slow or stop fatigue crack growth, replace lost structural area due to corrosion grindouts, and structurally enhance areas with small and negative margins. Boron epoxy, GLARE®, and graphite epoxy materials have been used as composite patches to restore damaged metallic wing skins, fuselage sections, floor beams, and bulkheads. As a crack growth inhibitor, the stiff bonded composite materials constrain the cracked area, reduce the gross stress in the metal, and provide an alternate load path around the crack. As a structural enhancement or blendout filler, the high modulus fiber composites offer negligible aerodynamic resistance and tailorable properties. Surface preparation is very important to achieve the adhesive strength. Grit blast silane and phosphoric acid anodizing are used to prepare aluminum skin. Film adhesives using a 250 °F (121 °C) cure are used routinely to bond the doublers to the metallic structure. Critical areas of the installation process include a good thermal cure control, having and maintaining water-free bond surfaces, and chemically and physically prepared bond surfaces. Secondarily bonded precured doublers and in-situ cured doublers have been used on a variety of structural geometries ranging from fuselage frames to door cutouts to blade stiffeners. Vacuum bags are used to apply the bonding and curing pressure between the doubler and metallic surface. Fiberglass Molded Mat Repairs Fiberglass molded mats consists of short fibers, and the strength is much less than other composite products that use continuous fibers. Fiberglass molded mats are not used for structural repair applications, but could be used for non- Injection gun structural applications. The fiberglass molded mat is typically used in combination with fiberglass fabric. The molded mats are impregnated with resin just like a wet layup for fiberglass fabric. The advantage of the molded mat is the lower cost and the ease of use. Radome Repairs Aircraft radomes, being an electronic window for the radar, are often made of nonconducting honeycomb sandwich structure with only three or four plies of fiberglass. The skins are thin so that they do not block the radar signals. The thin structure, combined with the location in front of the aircraft, makes the radome vulnerable to hail damage, bird strikes, and lightning strikes. Low-impact damage could lead to disbonds and delamination. Often, water is found in the radome structure due to impact damage or erosion. The moisture collects in the core material and begins a freezethaw cycle each time the airplane is flown. This eventually breaks down the honeycomb material causing a soft spot on the radome itself. Damage to a radome needs to be repaired quickly to avoid further damage and radar signal obstructions. Trapped water or moisture can produce a shadow on the radar image and severely degrade the performance of the radar. To detect water ingression in radomes, the available NDE techniques include x-ray radiography, infrared thermography, and a radome moisture meter that measures the RF power loss caused by the presence of water. The repairs to radomes are similar to repairs to other honeycomb structures, but the technician needs to realize that repairs could affect the radar performance. A special tool is necessary to repair severely damaged radomes. [Figure 7-68] Transmissivity testing after radome repair ensures that the radar signal is transmitted properly through the radome. Radomes have lightning protections strips bonded to the outside of the radome to dissipate the energy of a lightning 20 psi air Drill holes Skin Inject resin Delamination Figure 7-67. Resin injection repair. Figure 7-68. Radome repair tool. 7-40

Use Quizgecko on...
Browser
Browser