Apparato Cardiovascolare PDF
Document Details
Uploaded by ImmaculateNobility4405
Accademia Italiana Personal Trainer
Tags
Related
- Cardiovascular System and Heart Anatomy PDF
- Cardiovascular System Anatomy PDF
- NATS1010 Human Anatomy and Physiology 2 Cardiovascular System 1 Practical PDF
- Cardiovascular System Anatomy Pre-learning Report PDF
- Heart Anatomy - FoAP Cardiovascular System
- Human Anatomy - Heart (Cardiovascular System) PDF
Summary
This document provides a detailed description of the cardiovascular system, including its components, function, and processes. It uses clear language and diagrams to explain the intricate workings of the circulatory system.
Full Transcript
ACCADEMIA ITALIANA PERSONAL TRAINER 3. L'APPARATO CARDIOVASCOLARE L’apparato cardiovascolare o cardiocircolatorio ha il compito di trasportare nutrienti e gas in tutto l’organismo, questo è costituito da un insieme di canali di vario calibr...
ACCADEMIA ITALIANA PERSONAL TRAINER 3. L'APPARATO CARDIOVASCOLARE L’apparato cardiovascolare o cardiocircolatorio ha il compito di trasportare nutrienti e gas in tutto l’organismo, questo è costituito da un insieme di canali di vario calibro, i vasi, nei quali circolano il sangue e la linfa. Si distinguono quindi due apparati circolatori: Apparato circolatorio sanguifero: costituito da cuore, arterie, vene e capillari. Apparato circolatorio linfatico: costituito da vasi linfatici, linfonodi, timo, milza e midollo osseo. Il cuore è la pompa del sistema cardiovascolare, ha la funzione di trasportare ossigeno, anidride carbonica, nutrienti e altre sostanze (ormoni) in tutto il corpo. A livello istologico, il cuore è un sincizio funzionale formato cioè da tre tipi di cellule (cellule pacemaker, miocardiche e di conduzione) che comunicano tra loro tramite gap-junction, o giunzioni comunicanti. Il cuore è l’organo principale dell’apparato cardiocircolatorio, in quanto grazie alle sue contrazioni ritmiche è in grado di permettere la circolazione del sangue. È un organo cavo, impari, a struttura prevalentemente muscolare. È situato nella cavità toracica, più precisamente nel mediastino anteriore, sopra al diaframma, con la base rivolta verso l’alto a destra e all’indietro, l’apice si trova in basso a sinistra e in avanti. È contenuto in un sacco connettivale, detto pericardio fibroso, rivestito internamente da una doppia membrana sierosa, il pericardio sieroso. Il cuore è costituito da 4 camere, 2 superiori (atrio destro e sinistro) e 2 inferiori (ventricolo destro e sinistro); tra la parte destra e sinistra del cuore vi è un setto, che ha la funzione di non permettere alcuno scambio, mentre tra atrio e ventricolo corrispondente si trova una valvola (mitrale a sinistra e tricuspide a destra) che permette il passaggio di sangue dall’atrio al ventricolo. Sono presenti delle valvole anche tra i ventricoli e le arterie corrispondenti l’aorta per il ventricolo sinistro e l’arteria polmonare per il ventricolo destro. La funzione del cuore è quella di far circolare incessantemente il sangue, contraendosi e rilasciandosi ritmicamente, spingendo il sangue nelle arterie e aspirandolo dalle vene. Il ciclo cardiaco è caratterizzato da due momenti: Momento di contrazione, definito sistole, in cui si ha l’espulsione del sangue ventricolare verso le arterie aorta e polmonare. Momento di dilatazione, detto diastole, in cui le fibre muscolari del cuore si rilasciano, permettendo così un nuovo riempimento delle cavità cardiache. Questi due movimenti si alternano regolarmente per gli atri e i ventricoli: quando gli atri si contraggono (sistole atriale) i ventricoli si distendono (diastole ventricolare) e viceversa, quando i ventricoli si contraggono gli atri si distendono. 11 3. L'APPARATO CARDIOVASCOLARE ACCADEMIA ITALIANA PERSONAL TRAINER Il ciclo cardiaco, cioè la successione ritmica di questi movimenti, si svolge in tre fasi: Durante la sistole atriale, gli atri si contraggono e spingono il sangue nei ventricoli dilatati attraverso le valvole atrio-ventricolari (tricuspide e mitrale) aperte. Durante la sistole ventricolare la muscolatura dei ventricoli si tende e si contrae spingendo il sangue nelle arterie. Le valvole atrio-ventricolari restano chiuse e quelle semilunari aperte, mentre gli atri sono dilatati. Breve pausa nella quale tutto il cuore è in diastole (dilatazione). Il tempo compiuto dal cuore per effettuare un ciclo cardiaco è compreso in 0,8-0,9 secondi, in condizioni di riposo considerando una FC al minuto di 70. 12 3. L'APPARATO CARDIOVASCOLARE ACCADEMIA ITALIANA PERSONAL TRAINER 13 3. L'APPARATO CARDIOVASCOLARE ACCADEMIA ITALIANA PERSONAL TRAINER I vasi sanguigni sono le strutture deputate al trasporto di sangue nell'organismo. Si classificano in: Arterie: vasi sanguigni che nascono dai ventricoli e portano il sangue poco ossigenato ai polmoni (attraverso l'arteria polmonare che origina dal ventricolo destro) e sangue ossigenato a tutto il corpo (attraverso l'aorta che origina dal ventricolo sinistro); Vene: vasi sanguigni che trasportano sangue carico di anidride carbonica ai polmoni e sostanze di rifiuto a fegato e a reni per la depurazione; le loro pareti sono meno spesse di quella delle arterie, poiché la pressione del sangue è meno elevata; Capillari: permettono gli scambi fra il sangue e i tessuti, infatti sono di dimensioni microscopiche e si trovano fra le cellule; il letto capillare collega il circuito arterioso e quello venoso. Il lato arterioso di ciascun letto capillare porta il sangue ossigenato dal cuore ai tessuti, mentre il sangue povero di ossigeno raccolto dai tessuti risale attraverso le vene al cuore, aiutato in questo dalla pompa muscolare, cioè dalla pressione esercitata dai muscoli sulle vene. La circolazione sanguigna segue quindi un percorso a senso unico attraverso il cuore. Nella parte destra, all'altezza dell'atrio destro il sangue venoso penetra dalle vene cave superiore ed inferiore, scende nel ventricolo destro attraverso la valvola tricuspide. La contrazione del ventricolo destro lo spinge attraverso la valvola semilunare nell'arteria polmonare che si divide subito in due rami per raggiungere i polmoni dove il sangue si rifornirà di ossigeno (piccola circolazione). Attraverso le quattro vene polmonari il sangue, ricco in ossigeno, ritornerà al cuore penetrando questa volta nell'atrio sinistro. Scendendo attraverso la valvola mitrale nel ventricolo sinistro, raggiungerà l'arteria aorta, passando la valvola semilunare, dando origine alla grande circolazione. Per il maggiore lavoro che compie mandando il sangue in tutto il corpo, il ventricolo sinistro ha pareti muscolari più robuste rispetto al ventricolo destro e ai due atri destro e sinistro. La circolazione del sangue compie quindi un doppio circuito in successione che si distingue in una grande circolazione o circolazione sistemica e una piccola circolazione o circolazione polmonare con nodo/motore centrale il cuore. Le circolazioni sistemica e polmonare hanno valori pressori differenti, la circolazione sistemica ha picco sistolico di 120 mmHg e valore telediastolico di 80 mmHg; la circolazione polmonare ha picco sistolico di 18-25 mmHg e valore telediastolico di 6-10 mmHg. Il sangue che circola all'interno del corpo, oltre ad essere ricaricato di ossigeno, deve essere purificato dalle scorie e arricchito di sostanze nutritive. La circolazione portale assolve a tali funzioni, attraverso il sistema portale epatico, il sangue ricco di sostanze nutritive e scorie, proveniente dall'intestino viene filtrato, prima di essere di nuovo immesso nel torrente circolatorio. 14 3. L'APPARATO CARDIOVASCOLARE ACCADEMIA ITALIANA PERSONAL TRAINER 15 3. L'APPARATO CARDIOVASCOLARE ACCADEMIA ITALIANA PERSONAL TRAINER 3.1 IL SISTEMA LINFATICO Il sistema linfatico è strettamente correlato con quello circolatorio. Con questo sistema il liquido interstiziale tessutale viene drenato passivamente e attraverso i vasi linfatici la linfa arriva nei condotti principali. Una piccola parte, circa il 10% del sangue che arriva al cuore attraverso il sistema venoso è costituito dalla linfa. All'interno di questo composto, sono presenti proteine, acqua e cellule immunitarie, le funzioni del sistema linfatico, sono perciò quelle di drenare il liquido interstiziale e di difendere l'organismo da tossine, batteri, virus e allergeni. Quest'ultima funzione viene assolta dai vasi linfatici nella sede dove sono presenti i linfonodi, l'ingrossamento di tali strutture o la comparsa di edemi possono essere indicatori di uno stato infiammatorio. 3.2 LA PRESSIONE ARTERIOSA La pressione arteriosa è la pressione con la quale il sangue viene spinto lungo le arterie. Essa viene regolata soprattutto dalle arteriole. Si definisce pressione sistolica, o massima, la pressione che si crea all'interno del ventricolo sinistro durante la contrazione. Si definisce pressione diastolica, o minima, la pressione che si ha a livello dell'aorta durante la fase di diastole, quando la valvola aortica è chiusa. La pressione diastolica è perciò la pressione che deve vincere il ventricolo sinistro per far sì che la valvola aortica si apra e il sangue venga espulso dal ventricolo. Se la pressione diastolica rimane troppo elevata per lunghi periodi, si ha una sofferenza del cuore, con conseguente adattamento ipertrofico del ventricolo sinistro. L'ipertensione arteriosa è considerata la causa di molte patologie gravi che se non trattate, possono risultare anche letali. L’OMS (Organizzazione Mondiale Sanità) ha stabilito questi parametri in riferimento alla pressione arteriosa: PA < 120/80 Ottimale PA < 140/90 Normoteso PA 140-159/90-99 Ipertensione lieve PA 160-179/100-109 Ipertensione moderata PA ≥ 180/110 Ipertensione grave 16 3. L'APPARATO CARDIOVASCOLARE ACCADEMIA ITALIANA PERSONAL TRAINER 3.3 ADATTAMENTI CARDIOVASCOLARI INDOTTI DALL'ATTIVITA' FISICA In un adulto sano la frequenza cardiaca al minuto in condizione di riposo oscilla tra 60-80 battiti; è considerata alta oltre i 100 battiti, detta anche tachicardia; bassa sotto i 60 battiti, detta anche bradicardia. La gittata cardiaca a riposo in un adulto è di circa 5 L, risultato del prodotto tra i circa 70 mL del volume sistolico e i 70 battiti/minuto della frequenza cardiaca. La gittata cardiaca è il parametro fondamentale della funzione cardiaca e si deve poter adattare all’attività svolta o alla temperatura esterna. La gittata cardiaca può aumentare perciò notevolmente durante l’attività fisica. Durante un lavoro muscolare la richiesta di energia e quindi anche di ossigeno da parte dei muscoli cresce, in alcuni casi anche di molto, grazie all'apparato cardiovascolare queste richieste possono venire soddisfatte. Durante il lavoro muscolare come detto il fabbisogno di ossigeno nei muscoli cresce, l’apparato cardiovascolare deve far fronte a questa maggior richiesta e al contempo non deve far mancare il giusto rifornimento di ossigeno in organi come il cuore e il cervello che non possono assolutamente rimanere senza. La quantità di sangue in circolo si definisce come gittata cardiaca, cioè la quantità di sangue pompata dal cuore in un minuto, che in condizioni di riposo corrisponde come detto a circa 5 litri/min per un uomo di 70 kg alto 1.70 metri, che in condizioni di sforzo muscolare può arrivare, in un soggetto giovane, fino a circa 30 litri/min. L’aumento fisiologico della gittata cardiaca durante il lavoro muscolare è strettamente connesso col carico lavorativo e quindi con il consumo di ossigeno, tra soggetti sedentari o allenati vi è poca differenza nel consumo di ossigeno in condizioni di riposo, mentre in condizioni di lavoro questa differenza nel massimo consumo di ossigeno risulta essere marcata, infatti il VO2max nei soggetti allenati può essere anche di molto più alto rispetto ai soggetti sedentari. Le donne hanno un VO2max più basso rispetto agli uomini, questo dovuto alla diversa concentrazione di emoglobina e alla minore massa muscolare. Attraverso l’allenamento gli atleti sviluppano una diminuzione dei battiti cardiaci per minuto, questo è un adattamento fisiologico indotto dall’allenamento che è indice di maggior efficienza del sistema cardiocircolatorio soprattutto in condizioni di attività, infatti l’aumento della frequenza cardiaca nel soggetto allenato o sedentario sotto sforzo è lineare, può raggiungere circa i 200 battiti per minuto in entrambi, la differenza sostanziale sta nel fatto che il cuore del soggetto allenato è in grado di avere dei valori di gittata cardiaca più elevati rispetto al soggetto sedentario sotto sforzo a parità di battiti per minuto, raggiungendo per questo motivo dei carichi di lavoro allenanti maggiori. I principali cambiamenti fisiologici durante l’esercizio fisico si possono notare a livello cardiovascolare, respiratorio e renale. 17 3. L'APPARATO CARDIOVASCOLARE ACCADEMIA ITALIANA PERSONAL TRAINER Durante un'intensa attività fisica l’organismo utilizza prima l'ATP presente nelle riserve muscolari e quello prodotto dal metabolismo aerobico attraverso l'ossigeno accumulato dalla mioglobina muscolare e l'emoglobina in circolo. L’utilizzo di ossigeno presente nell’organismo provoca un debito di quest’ultimo che è proporzionale all’attività fisica che si sta compiendo. Aumenta anche la concentrazione di CO2 che legandosi all’acqua porta alla formazione di H+ che aumentano l’acidità, l’aumentata concentrazione di questo ione induce vasodilatazione con conseguente aumento del flusso di sangue e così anche di ossigeno che porta ad un aumento degli atti respiratori. Gli atti respiratori passano dai normali 12-20 che si hanno a riposo ai 30-40 sotto sforzo per ogni minuto, avviene anche un’espirazione forzata, attivata dai muscoli intercostali interni e dagli addominali, cosa che non avviene in condizioni di riposo, queste modificazioni fisiologiche portano ad un aumento della ventilazione alveolare che è proporzionale all’esercizio fisico che si sta svolgendo. La gittata cardiaca aumenta dato che aumenta la frequenza cardiaca e la gittata sistolica, quest’ultima influenzata dalla forza di contrazione del cuore e dal volume telediastolico, a sua volta influenzato dal ritorno venoso, dalla condizione di riposo di 70 ml di sangue la gittata sistolica durante l’attività fisica passa a 100 ml. L’aumentata forza di contrazione del miocardio, come anche l’aumentata frequenza cardiaca è favorita dall’attività del sistema ortosimpatico durante lo sforzo, quest’ultimo elemento molto importante perché si contrappone all’aumentato ritorno venoso indotto dalla contrazione dei muscoli scheletrici che comprimendo le vene portano il sangue verso il cuore, se non vi fosse appunto una stimolazione del sistema simpatico nell’aumentare la frequenza cardiaca un eccessivo ritorno venoso potrebbe allungare eccessivamente le cellule del miocardio provocandone il danneggiamento. Durante l’esercizio fisico si assiste anche ad una vasodilatazione delle arteriole verso i muscoli coinvolti nell’attività fisica e una vasocostrizione delle arteriole verso gli altri tessuti, anche le arteriole renali sono influenzate da questa variazione, diminuisce il flusso di sangue ai reni, la pressione a livello locale diminuisce, di conseguenza la velocità di filtrazione glomerulare si abbassa, la produzione di urina diminuisce per eliminare meno liquidi essenziali per la termoregolazione durante l’attività fisica. A seconda del tipo di attività fisica che si svolge, l'apparato cardiovascolare si adatta in maniera differente. Negli sport di endurance è importante aumentare la gittata cardiaca, in modo che il volume di sangue che circoli sia maggiore; negli sport di forza e potenza per far fronte alle aumentate resistenze periferiche che avvengono nel corso di tali attività, il cuore aumenta la sua forza di contrazione. Nel lungo periodo gli atleti che svolgono attività di endurance, sviluppano un aumento del volume delle cavità interne del cuore (ipertrofia eccentrica); gli atleti che svolgono attività di forza e potenza nel lungo periodo, sviluppano un'ipertrofia delle pareti interne cardiache (ipertrofia concentrica). 18 3. L'APPARATO CARDIOVASCOLARE ACCADEMIA ITALIANA PERSONAL TRAINER 4. IL SANGUE Il sangue è un tessuto connettivo la cui sostanza intercellulare liquida (plasma) gli permette di circolare nei vasi sanguigni. Il plasma costituisce circa il 55% del sangue intero ed è formato in gran parte da acqua (90%), in cui si trovano disciolti soluti (10%). Sospesi nel plasma si trovano tre diversi tipi di cellule: globuli rossi, globuli bianchi e piastrine che costituiscono gli elementi figurati del sangue (l'altro 45% del sangue intero). I globuli rossi sono cellule prive di nucleo, tondeggianti, schiacciate al centro e rialzate ai bordi. Sono rivestiti da una sottile membrana cellulare e il loro colore rosso è dovuto alla presenza nel citoplasma di una proteina contente ferro, l'emoglobina che ha la proprietà di legarsi con l'ossigeno formando un composto labile detto ossiemoglobina che conferisce al sangue arterioso il suo caratteristico colore rosso brillante, mentre il sangue venoso ha un colore rosso cupo. Una carenza di ferro o di emoglobina incide perciò per ovvi motivi con la prestazione atletica. Hanno una vita breve (ca. 120 giorni) al termine della quale vengono distrutti nella milza e nel fegato e rimpiazzati da nuovi eritrociti prodotti nel midollo osseo rosso delle ossa. Negli uomini generalmente si riscontrano mediamente delle concentrazioni di eritrociti nel sangue superiori del 10% circa rispetto alle donne. Con l'attività fisica si eleva mediamente la percentuale di globuli rossi, in condizioni fisiologiche ciò non arreca nessun danno, nel caso in cui l'ematocrito sia elevato oltre certi limiti, attraverso pratiche illecite, i danni per la salute possono essere anche molto gravi. I globuli bianchi invece sono provvisti di nucleo, sono incolori e non hanno una forma ben definita. I leucociti sono cellule del sistema immunitario che hanno la funzione di difendere l'organismo dagli agenti patogeni (virus, batteri, miceti e parassiti). I trombociti sono frammenti del citoplasma dei megacariociti (cellule del midollo osseo adibite alla produzione di piastrine). Intervengono per riparare le lesioni che avvengono in seguito a traumi nella superficie interna dei vasi sanguigni, detta endotelio. Producono inoltre sostanze importanti per favorire la coagulazione del sangue e per attivare il processo di vasocostrizione. Le funzioni del sangue possono essere riassunte in questo modo: trasporto di ossigeno, sostanze nutritive e ormoni a tutte le cellule e tessuti; di anidride carbonica e sostanze di rifiuto dalle cellule ai polmoni e agli organi escretori; difesa dell'organismo, attraverso i leucociti; riparazione, attraverso le piastrine; regolazione della temperatura corporea, il suo calore specifico e la sua conduttività permettono di assorbire grandi quantità di calore, senza un apprezzabile aumento della propria temperatura, riesce quindi a trasferire il calore assorbito dagli organi profondi, alla superficie del corpo (pelle) dove può essere facilmente disperso. 19 4. IL SANGUE ACCADEMIA ITALIANA PERSONAL TRAINER 5. ANALISI CLINICHE PER LO SPORTIVO L’interpretazione dei risultati di tali esami spetta esclusivamente al medico, al solo scopo informativo, vengono riportate le possibili cause che possono alterare i valori. Se i livelli di globuli rossi sono troppo bassi, ciò può indicare uno stato di malessere, dove alla base ci possono essere stati di stress prolungati, o carenze alimentari. La VES, velocità di eritro-sedimentazione, se elevata può indicare la presenza di uno stato infiammatorio. I valori delle transaminasi, possono essere elevati dopo un allenamento intenso, anche in assenza di patologie, è consigliabile per questo motivo effettuare tale rilevazione dopo qualche giorno di riposo dall'allenamento. Valori elevati di azotemia, possono essere indicatori di un'insufficienza renale, o molto spesso possono derivare da un' eccessiva assunzione di proteine con l'alimentazione, con concomitante scarsa assunzione di acqua. I valori di creatinina, come quelli delle transaminasi, possono essere leggermente elevati, a seguito di un allenamento intenso, è consigliabile per questo motivo effettuare tale rilevazione dopo qualche giorno di riposo dall'allenamento. Valori elevati di glicemia a digiuno, possono indicare la presenza di diabete. Alterazioni nei valori degli elettroliti nel sangue: potassio, sodio, magnesio, calcio, ecc., possono essere indicatori di una sofferenza renale, o più semplicemente di stati carenziali di acqua e sali minerali. Il quadro lipidico è molto importante per valutare se ci sono degli squilibri che possono provocare nel lungo periodo patologie anche gravi. Il valore del CPK, o creatina fosfochinasi, se elevato può essere indicatore di danni nel tessuto muscolare cardiaco, o in quello muscolare striato, in quest'ultimo caso sarebbe un'alterazione fisiologica se rilevata a seguito di un allenamento intenso. 20 5. ANALISI CLINICHE PER LO SPORTIVO