Fluid Statics Lecture 03: Pressure PDF
Document Details
Uploaded by FlatteringChromium403
Rensselaer Polytechnic Institute
Tags
Summary
This document presents lecture notes on fluid statics, specifically focusing on pressure, its units, conversions, and variations. It covers concepts like absolute and gage pressure, pressure at a point in a fluid, pressure variation with depth, and pressure in connected fluids, illustrating theory with diagrams and equations.
Full Transcript
# Fluid Statics ## Lecture 03: Pressure **Pressure:** normal force exerted by the fluid per unit area. **Units:** * **SI:** * N/m<sup>2</sup> = Pa = kg m/s<sup>2</sup> = kg/m<sup>2</sup> * Common: MPa, kPa, 10<sup>3</sup> Pa * **USCU:** * 1 kgf/cm<sup>2</sup> * lbf/ft<sup>2</sup...
# Fluid Statics ## Lecture 03: Pressure **Pressure:** normal force exerted by the fluid per unit area. **Units:** * **SI:** * N/m<sup>2</sup> = Pa = kg m/s<sup>2</sup> = kg/m<sup>2</sup> * Common: MPa, kPa, 10<sup>3</sup> Pa * **USCU:** * 1 kgf/cm<sup>2</sup> * lbf/ft<sup>2</sup> = lb ft/s<sup>2</sup> = lb/ft<sup>2</sup> * **1 slug:** mass in USCU * **1 lbf:** 1 lbm x32.2 ft/s<sup>2</sup> * **1 lbf = (32.2 lbm/1 slug) x 1 ft/s<sup>2</sup>** **Pr units:** * psi: lbf/in<sup>2</sup> **Conversions:** * 1 MPa = 10<sup>6</sup> Pa * 1 psi = 1 lbf/sq in * 1 ban = 10<sup>5 </sup> = 0.1 MPa = 100 kPa * 1 atm = 101.325 kPa * 1 kgf/cm<sup>2</sup> = 9.807 N/cm<sup>2</sup> = 9.807 x 10<sup>4</sup> Pa = 0.9807 ban = 0.9679 atm ## Absolute Pressure vs Gage Pressure **Absolute Pressure:** with reference to vacuum **Gage pressure:** with reference to atmospheric pressure * P<sub>abs</sub> = P<sub>g</sub> + P<sub>atm</sub> * 0-123 MPa (abs) * 0.325 MPa (gage) * P<sub>vr</sub> = P<sub>r</sub> - P<sub>atm</sub> * P<sub>atm</sub> = absolute pressure **Pressure at a point** (Pascal Law) * Pressure at a point in the fluid is the same in all directions * No specific direction but only magnitude. * (scalar quantity for stationary fluid) - Gets its direction when acting on a surface ### Proof: ![Image of Pressure](undefined) * Consider a differential element in stationary fluid. ∑F<sub>x</sub> = 0 * P<sub>1</sub> △z△y - P<sub>3</sub> △y l sinθ = 0 ∑F<sub>z</sub> = 0 * P<sub>2</sub> △x△y - P<sub>3</sub> △y l cos θ - 1/2 p<sub>g</sub> △x △y △z = 0 * Weight of element Note * △x = l cos θ * △z = l sin θ * 1) = P<sub>1</sub> △y l sin θ - P<sub>3</sub> △y l sin θ = 0 * P<sub>1</sub> - P<sub>3</sub> = 0 * P<sub>1</sub> = P<sub>3</sub> (la) * 2) → P<sub>2</sub> △y l cos θ - P<sub>3</sub> △y l cos θ - 1/2 p<sub>g</sub> l cos θ △y △z = 0 * P<sub>2</sub> - P<sub>3</sub> - 1/2 p<sub>g</sub> △z = 0 * As △z → 0 * P<sub>2</sub> - P<sub>3</sub> = 0 * P<sub>2</sub> = P<sub>3</sub> (2a) * Thus P<sub>1</sub> = P<sub>2</sub> = P<sub>3</sub> ## Pressure At A Point In Stationary Liquid * Pressure at a point in a stationary liquid is the same in all directions. ## Variation of Pressure with Depth * (In gravity) * Consider a rectangular differential element * ∑F<sub>z</sub> = 0 * → P<sub>1</sub> △x △y - P<sub>2</sub> △x △y - p<sub>g</sub> △x △y △z = 0 * △p = P<sub>2</sub> - P<sub>1</sub> = -p<sub>g</sub> △z * Assume △y is the thickness * P, S could be varying functions * As lim △z → 0 * dp/dz = - p<sub>g</sub> ## Pressure In A Connected Fluid * For varying P, g * △p = P<sub>2</sub> - P<sub>1</sub> = - ∫p<sub>g</sub>dz * Pressure in a 'connected fluid' is the same at same height from free surface. ![Image of Connected Fluid](undefined) * P<sub>abs</sub> = P<sub>atm</sub> + pgh ## Mechanical Advantage ![Image of Mechanical Advantage](undefined) * F<sub>1</sub> = P A<sub>1</sub> * F<sub>2</sub> = P<sub>2</sub> A<sub>2</sub> * P = F<sub>1</sub> / A<sub>1</sub> = P<sub>2</sub> = F<sub>2</sub> / A<sub>2</sub> * F<sub>2</sub> = A<sub>2</sub>/A<sub>1</sub> F<sub>1</sub> * A<sub>2</sub> > A<sub>1</sub> * Mechanical Advantage ## Barometer * Measures ambient (Atmospheric) pressure ![Image of Barometer](undefined) * P<sub>atm</sub> = pgh * h... 760 mm of Hg ## Manometers: Pressure Measurement * Measurement (Gage Pressure) ![Image of Manometers](undefined) * P<sub>gas</sub> = P<sub>1</sub> = P<sub>a</sub> = P<sub>atm</sub> + p<sub>g</sub>h * P<sub>acos</sub> negligible * Continuity (same height) * P<sub>mercury</sub> ## Layered Liquids ![Image of Layered Liquids](undefined) * P<sub>atm</sub> * a * P<sub>1</sub> h<sub>a</sub> = P<sub>a</sub>g h<sub>a</sub> * b * P<sub>2</sub> = P<sub>1</sub> + P<sub>g</sub> h<sub>b</sub> ## Example Problem ![Image of Example Problem](undefined) * h<sub>1</sub> = 0.1 m * h<sub>2</sub> = 0.2 m * h<sub>3</sub> = 0.35 m * P<sub>water</sub> = 1000 kg/m<sup>3</sup> * P<sub>oil</sub> = 850 kg/m<sup>3</sup> * P<sub>Hg</sub> = 13,600 kg/m<sup>3</sup> * P<sub>atm</sub>: 85.6 kPa * P<sub>1</sub> + P<sub>w</sub>g h<sub>1</sub> = P<sub>b</sub> * P<sub>b</sub> + P<sub>o</sub>g h<sub>2</sub> = P<sub>c</sub> * P<sub>c</sub> - P<sub>m</sub>g h<sub>3</sub> = P<sub>2</sub> * Find P<sub>1</sub> (absolute pressure) * Sol'n: * P<sub>1</sub> + P<sub>w</sub>g h<sub>1</sub> + P<sub>oil</sub> g h<sub>2</sub> - P<sub>Hg</sub> g h<sub>3</sub> = P<sub>2</sub> ## Apply * △P = P<sub>2</sub> - P<sub>1</sub> = - P<sub>g</sub> h * P<sub>1</sub> = P<sub>2</sub> + P<sub>g</sub> h * P<sub>1</sub> = P<sub>atm</sub> - (P<sub>w</sub>g h<sub>1</sub> + P<sub>oil</sub>g h<sub>2</sub> + P<sub>m</sub> g h<sub>3</sub>) * P<sub>1</sub> = P<sub>atm</sub> - g (P<sub>w</sub>h<sub>1</sub> + P<sub>oil</sub> h<sub>2</sub> - P<sub>m</sub> h<sub>3</sub>) * P<sub>1</sub> = 130 kPa (abs)