DNA, RNA, Protein Synthesis, Gene Regulation Study Guide PDF

Summary

This document is a study guide for DNA, RNA, protein synthesis, and gene regulation. It covers the structure, function, and replication of DNA and RNA, as well as the processes of protein synthesis and gene regulation. Keywords include DNA, gene regulation, and protein synthesis.

Full Transcript

‭DNA,RNA,‬‭Protein‬‭Synthesis,‬‭Gene‬‭Regulation‬‭Ch‬‭10‬ ‭‬ ‭Describe‬‭the‬‭following‬‭scientists'‬‭DNA‬‭experiments‬‭and/or‬‭discoveries:‬ ‭○‬ ‭Griffith‬‭-‬‭“transforming‬‭factor”‬‭from‬‭1st‬‭bacteria‬‭transferred‬‭to‬‭the‬‭2nd‬ ‭○‬ ‭Hershey‬‭and‬‭Chase‬‭-‬‭Demonstrated‬‭tha...

‭DNA,RNA,‬‭Protein‬‭Synthesis,‬‭Gene‬‭Regulation‬‭Ch‬‭10‬ ‭‬ ‭Describe‬‭the‬‭following‬‭scientists'‬‭DNA‬‭experiments‬‭and/or‬‭discoveries:‬ ‭○‬ ‭Griffith‬‭-‬‭“transforming‬‭factor”‬‭from‬‭1st‬‭bacteria‬‭transferred‬‭to‬‭the‬‭2nd‬ ‭○‬ ‭Hershey‬‭and‬‭Chase‬‭-‬‭Demonstrated‬‭that‬‭DNA‬‭was‬‭hereditary‬‭material.‬ ‭○‬ ‭Franklin‬‭-‬‭Photo‬‭51‬‭revealed‬‭the‬‭helical‬‭nature‬‭of‬‭DNA‬ ‭○‬ ‭Watson‬‭and‬‭Crick‬‭-‬‭Model‬‭of‬‭Dna‬‭and‬‭base‬‭pairing,‬‭won‬‭a‬‭Nobel‬‭prize.‬ ‭○‬ ‭Chargaff‬ ‭-‬‭A‬‭to‬‭T‬‭amounts‬‭are‬‭equal‬‭to‬‭C‬‭to‬‭G‬‭amounts.‬ ‭○‬ ‭Avery‬‭-‬‭Revealed‬‭that‬‭the‬‭transforming‬‭agent‬‭in‬‭bacteria‬‭was‬‭DNA.‬ ‭○‬ ‭Beadle‬‭and‬‭Tatum‬‭-‬‭One‬‭gene‬‭makes‬‭one‬‭specific‬‭protein.‬ ‭‬ D ‭ iagram‬‭and‬‭describe‬‭the‬‭structure‬‭and‬‭replication‬‭of‬‭DNA‬‭and‬‭the‬‭role‬‭of‬‭DNA‬ ‭polymerase.‬‭nucleotides,‬‭DNA‬‭polymerases,‬‭helicase,‬ ‭ligase‬‭Untwists.‬ ‭‬ ‭**‬‭Sequence‬‭of‬‭bases‬‭determine‬‭genes**‬ ‭○‬ ‭Structure‬‭:‬ ‭○‬ ‭Nucleotide‬‭sequence‬‭joined‬‭by‬‭covalent‬‭bonds‬ ‭between‬‭sugar‬‭and‬‭a‬‭negative‬‭phosphate‬‭.‬‭Bases‬ ‭are‬‭connected‬‭by‬‭hydrogen‬‭(weaker)‬‭bonds.‬ ‭○‬ ‭Bases‬‭are‬‭Adenine‬‭,‬‭Cytosine,‬‭Thymine‬ ‭(Pyrimidine/single‬ ‭ring)‬‭and‬‭Guanine‬ ‭(Purine/double‬‭ring)‬‭.‬ ‭Sugar‬‭is‬‭Deoxyribose-‬‭5‬ ‭carbon‬‭ring‬‭missing‬‭an‬‭oxygen‬‭atom.‬ ‭‬ ‭Replication‬‭:‬ ‭○‬ ‭In‬‭Nucleus,‬‭Parent‬‭DNA‬‭untwists‬ ‭○‬ ‭Then‬‭strands‬‭separate‬ ‭○‬ ‭Then‬‭bases‬‭in‬‭cytoplasm‬‭attach‬‭to‬‭complementary‬ ‭bases‬ ‭○‬ ‭2‬‭Daughter‬‭DNA‬‭molecules‬‭rewind‬‭as‬‭it‬‭forms.‬ ‭○‬ ‭Old‬‭DNA‬‭used‬‭as‬‭a‬‭template‬‭for‬‭new‬‭DNA‬ ‭○‬ ‭Leading‬‭strand‬‭towards‬‭the‬‭unzip,‬‭lagging‬‭strand‬‭towards‬‭the‬‭outside.‬‭Lagging‬ ‭strand‬‭marks‬‭Okazaki‬‭Fragments.‬ ‭○‬ ‭DNA‬‭Polymerase‬‭=‬‭Enzymes‬‭which‬‭make‬‭covalent‬‭bonds‬‭between‬‭nucleotides‬ ‭of‬‭the‬‭new‬‭strands.‬ ‭○‬ ‭With‬‭proteins,‬‭can‬‭repair‬‭DNA‬‭at‬‭a‬‭rate‬‭of‬‭50‬‭nucleotides‬‭per‬‭second.‬ ‭○‬ ‭1/1‬‭billion‬‭incorrectly‬‭paired.‬ ‭‬ ‭**‬‭DNA‬‭damaged‬‭by‬‭UV/X‬‭rays,‬‭toxic‬‭chemicals‬‭and‬‭viruses.**‬ ‭○‬ ‭Ensures‬‭that‬‭all‬‭cells‬‭share‬‭the‬‭same‬‭genetic‬‭information‬‭and‬‭can‬‭be‬‭passed‬ ‭down.‬ ‭‬ D ‭ iagram‬‭and‬‭describe‬‭the‬‭structure,‬‭forms‬‭and‬‭roles‬‭of‬‭RNA‬‭molecules,‬‭and‬‭the‬‭role‬‭of‬ ‭RNA‬‭polymerases.‬ ‭○‬ ‭mRNA:‬ ‭‬ ‭a‬‭single‬‭stranded‬‭dna‬‭molecule‬‭with‬‭ribose‬‭instead‬‭of‬‭deoxyribose‬‭and‬ ‭uracil‬‭in‬‭place‬‭of‬‭thymine.‬ ‭○‬ ‭tRNA‬‭:‬ ‭‬ ‭anticodon‬‭site‬‭as‬‭well‬‭as‬‭an‬‭amino‬‭acid‬ ‭bonding‬‭site,‬‭as‬‭well‬‭as‬‭A‬‭and‬‭P‬‭sites.‬ ‭‬ ‭A‬‭and‬‭P‬‭sites‬‭detach‬‭from‬‭the‬‭tRNA‬‭to‬ ‭find‬‭amino‬‭acids.‬ ‭‬ ‭Anticodons‬‭decode‬‭the‬‭mRNA‬‭so‬‭it‬‭can‬ ‭be‬‭translated‬‭into‬‭a‬‭protein.‬ ‭○‬ ‭rRNA‬‭:‬ ‭‬ ‭Ribosomal‬‭RNA.‬‭They‬‭start‬‭to‬‭fold‬‭to‬ ‭make‬‭the‬‭ribosomal‬‭subunit.‬ ‭○‬ ‭RNA‬‭polymerase‬ ‭‬ ‭Attaches‬‭to‬‭the‬‭DNA‬‭promoter‬‭nucleotide‬‭sequence‬‭on‬‭DNA.‬ ‭‬ ‭RNA‬‭is‬‭synthesized.‬ ‭‬ ‭Compare‬‭and‬‭contrast‬‭DNA‬‭and‬‭RNA‬‭molecules‬‭in‬‭structure‬‭and‬‭function.‬ ‭Feature‬ ‭DNA‬‭(Deoxyribonucleic‬ ‭RNA‬‭(Ribonucleic‬‭Acid)‬ ‭Acid)‬ ‭Sugar‬ ‭Deoxyribose‬ ‭Ribose‬ ‭Strands‬ ‭ ouble-stranded‬‭(usually‬ D ‭Single-stranded‬ ‭forms‬‭a‬‭double‬‭helix)‬ ‭Nitrogen‬‭Bases‬ ‭ denine‬‭(A),‬‭Thymine‬‭(T),‬ A ‭ denine‬‭(A),‬‭Uracil‬‭(U)‬ A ‭Cytosine‬‭(C),‬‭Guanine‬‭(G)‬ ‭replaces‬‭Thymine‬‭(T),‬ ‭Cytosine‬‭(C),‬‭Guanine‬‭(G)‬ ‭Function‬ ‭ tores‬‭and‬‭transmits‬‭genetic‬ S I‭nvolved‬‭in‬‭protein‬‭synthesis,‬ ‭information‬ ‭gene‬‭regulation‬ ‭Types‬ ‭One‬‭main‬‭type‬ ‭ ultiple‬‭types:‬‭mRNA‬ M ‭(messenger),‬‭tRNA‬‭(transfer),‬ ‭rRNA‬‭(ribosomal)‬ ‭Location‬‭in‬‭Cells‬ ‭Primarily‬‭in‬‭the‬‭nucleus‬ ‭ ound‬‭in‬‭both‬‭the‬‭nucleus‬ F ‭and‬‭cytoplasm‬ ‭Replication‬ ‭Self-replicating‬ ‭ ynthesized‬‭from‬‭DNA‬ S ‭(transcription),‬‭does‬‭not‬ ‭self-replicate‬ ‭Enzymes‬‭Involved‬ ‭DNA‬‭polymerase‬ ‭ NA‬‭polymerase‬‭(for‬ R ‭transcription)‬ ‭‬ D ‭ iagram‬‭and‬‭describe‬‭the‬‭3‬‭steps‬‭in‬‭mRNA‬‭processing‬‭in‬‭transcription,‬‭the‬‭3‬‭steps‬‭in‬ ‭translation,‬‭and‬‭amino‬‭acid‬‭sequencing/protein‬‭synthesis‬‭using‬‭the‬‭following:‬ ‭○‬ ‭Codon‬‭chart‬ ‭‬ ‭A‬‭chart‬‭that‬‭is‬‭used‬‭to‬‭translate‬‭a‬‭codon‬‭of‬‭mRNA‬‭(A‬‭triplet‬‭3‬‭nucleotides)‬ ‭to‬‭a‬‭singular‬‭amino‬‭acid.‬ ‭‬ ‭The‬‭chain‬‭of‬‭amino‬‭acids‬‭then‬‭form‬‭proteins,‬‭or‬‭polypeptide‬‭chains.‬ ‭○‬ ‭Introns‬ ‭‬ ‭The‬‭uncoded‬‭region‬‭of‬‭pre-mRNA.‬ ‭‬ ‭Usually‬‭cut‬‭and‬‭removed‬‭before‬‭RNA‬‭leaves‬‭the‬‭nucleus.‬ ‭‬ ‭(RNA‬‭SPLICING)‬ ‭○‬ ‭Exons‬ ‭‬ ‭The‬‭coded‬‭regions‬‭that‬‭stay‬‭when‬‭the‬‭mRNA‬‭leaves‬‭the‬‭nucleus.‬ ‭○‬ ‭Codon‬ ‭‬ ‭A‬‭triplet‬‭of‬‭3‬‭nucleotides‬‭in‬‭DNA‬‭or‬‭RNA‬‭that‬‭codes‬‭for‬‭a‬‭specific‬‭amino‬ ‭acid‬‭or‬‭signals‬‭the‬‭start‬‭or‬‭end‬‭of‬‭protein‬‭synthesis.‬ ‭○‬ ‭Anticodon‬ ‭‬ ‭The‬‭complementary‬‭codon‬‭that‬‭attaches‬‭to‬‭the‬‭codon‬‭in‬‭the‬‭mRNA.‬‭The‬ ‭other‬‭end‬‭of‬‭the‬‭tRNA‬‭site‬‭is‬‭where‬‭an‬‭Amino‬‭Acid‬‭can‬‭attach.‬ ‭‬ ‭On‬‭the‬‭tRNA,‬‭which‬‭is‬‭attached‬‭to‬‭the‬‭ribosomal‬‭site.‬ ‭○‬ ‭Cap‬‭&‬‭Tail‬ ‭‬ ‭The‬‭cap‬‭and‬‭tail‬‭are‬‭to‬‭protect‬‭RNA‬‭from‬‭enzymes‬‭in‬‭the‬‭cytoplasm,‬‭and‬ ‭help‬‭ribosomes‬‭recognize‬‭it‬‭as‬‭mRNA.‬ ‭○‬ ‭Polypeptide‬‭chain‬ ‭‬ ‭A‬‭chain‬‭of‬‭amino‬‭acids‬‭that‬‭are‬‭produced‬‭from‬‭the‬‭translation‬‭of‬‭mRNA‬‭to‬ ‭amino‬‭acids,‬‭with‬‭the‬‭tRNA‬‭pumping‬‭out‬‭the‬‭amino‬‭acids‬‭to‬‭form‬‭a‬‭chain.‬ ‭‬ ‭Also‬‭known‬‭as‬‭protein.‬ ‭‬ D ‭ efine‬‭mutation‬‭and‬‭describe‬‭how‬‭mutations‬‭occur.‬‭Identify‬‭ways‬‭that‬‭mutations‬‭can‬ ‭affect‬‭gene‬‭translation.‬ ‭○‬ ‭Mutation‬‭is‬‭a‬‭permanent‬‭change‬‭in‬‭the‬‭DNA‬‭sequence‬‭of‬‭an‬‭organism,‬‭occurring‬ ‭when‬‭there‬‭is‬‭an‬‭error‬‭during‬‭DNA‬‭replication‬‭during‬‭cell‬‭division‬ ‭○‬ ‭Mutation‬‭may‬‭occur‬‭when‬‭exposed‬‭to‬‭environment‬‭mutagens.‬ ‭○‬ ‭Mutations‬‭can‬‭affect‬‭gene‬‭translation‬‭by‬‭causing‬‭changes‬‭in‬‭the‬‭amino‬‭acid‬ ‭sequence‬‭of‬‭a‬‭protein,‬‭potentially‬‭leading‬‭to‬‭a‬‭non-functional‬‭protein‬‭or‬‭altered‬ ‭protein‬‭activity,‬‭depending‬‭on‬‭the‬‭specific‬‭mutation‬‭type.‬ ‭‬ ‭Mutation‬‭types:‬‭Deletion,‬‭Addition‬‭substitution‬ ‭○‬ ‭Silent‬‭mutation‬‭(Substitution):‬‭Substitution‬‭change‬‭that‬‭has‬‭little‬‭to‬‭no‬‭effect.‬ ‭‬ ‭Ex.‬‭GA‬‭A‬‭to‬‭GA‬‭G‬‭are‬‭both‬‭Glu‬‭amino‬‭acids.‬ ‭○‬ ‭Missense‬‭mutation‬‭(Changed):‬‭When‬‭one‬‭nucleotide‬‭is‬‭changed‬‭and‬‭has‬‭an‬ ‭effect.‬ ‭‬ ‭GGC‬‭(Gly)‬‭mutated‬‭to‬‭AGC‬‭(Ser)‬ ‭○‬ ‭Frameshift‬‭mutation‬‭(Deletion/Addition):‬‭When‬‭a‬‭nucleotide‬‭is‬‭added‬‭or‬‭deleted,‬ ‭causes‬‭a‬‭shift‬‭in‬‭the‬‭amino‬‭acid‬‭coding‬‭after‬‭the‬‭base.‬ ‭‬ ‭GATT‬‭A‬‭CA‬‭*Add‬‭mutation*‬‭GATT‬‭AA‬‭CA‬ ‭‬ ‭Or,‬‭GATTA‬‭C‭A ‬ ‬‭*Add‬‭mutation*‬‭GATTA‬ ‭A‬ ‭‬ ‭Explain‬‭how‬‭and‬‭why‬‭genes‬‭are‬‭regulated:‬ ‭○‬ ‭Genes‬‭are‬‭regulated‬‭by‬‭being‬‭turned‬‭“on‬‭and‬‭off”.‬‭This‬‭allows‬‭for‬‭specific‬ ‭proteins‬‭to‬‭be‬‭produced‬‭at‬‭the‬‭right‬‭time‬‭and‬‭the‬‭right‬‭amount‬ ‭‬ ‭Reproductive‬‭cloning‬ ‭○‬ ‭Reproductive‬‭cloning‬‭is‬‭the‬‭process‬‭of‬‭creating‬‭a‬‭whole‬‭other‬‭organism.‬ ‭‬ ‭Genetic‬‭identical‬‭copy‬ ‭○‬ ‭Process:‬ ‭‬ ‭Get‬‭an‬‭egg‬‭cell‬‭from‬‭an‬‭animal‬‭and‬‭remove‬‭the‬‭nucleus‬‭.‬ ‭‬ ‭Transfer‬‭the‬‭donor‬‭DNA‬‭to‬‭the‬‭empty‬‭egg‬‭cell.‬ ‭‬ ‭Egg‬‭is‬‭activated‬‭to‬‭start‬‭developing‬‭as‬‭an‬‭embryo.‬ ‭‬ ‭The‬‭embryo‬‭is‬‭then‬‭implanted‬‭into‬‭a‬‭surrogate‬‭mother‬‭to‬‭help‬‭it‬‭develop.‬ ‭‬ ‭**‬‭Dolly‬‭the‬‭first‬‭cloned‬‭sheep.**‬ ‭‬ ‭Therapeutic‬‭cloning‬‭of‬‭stem‬‭cells‬‭(embryonic‬‭vs‬‭adult)‬ ‭○‬ ‭Produced‬‭embryonic‬‭stem‬‭cells.‬ ‭○‬ ‭Grown‬‭in‬‭cultures.‬ ‭‬ ‭Embryonic‬‭stem‬‭cells‬‭are‬‭from‬‭blastocysts.‬‭Grown‬‭in‬‭a‬‭culture.‬‭Could‬ ‭grow‬‭cells‬‭for‬‭repair‬‭of‬‭injured‬‭or‬‭diseased‬‭organs,‬‭spinal‬‭cord‬‭injuries,‬‭or‬ ‭heart‬‭attacks.‬ ‭‬ ‭A‬‭controversial‬‭topic‬‭is‬‭the‬‭removal‬‭of‬‭ES‬‭cells‬‭that‬‭destroy‬‭the‬‭embryo.‬ ‭○‬ ‭**Totipotent‬‭-‬‭The‬‭possibility‬‭to‬‭turn‬‭into‬‭anything,‬‭and‬‭gain‬‭a‬‭new‬‭function.**‬ ‭○‬ ‭Adult‬‭Stem‬‭cells‬‭can‬‭also‬‭generate‬‭replacements‬‭for‬‭body‬‭cells.‬ ‭‬ ‭Also‬‭known‬‭as‬‭somatic‬‭cells.‬ ‭‬ ‭Less‬‭versatile‬‭than‬‭ES‬‭cells,‬‭but‬‭also‬‭less‬‭controversial.‬ ‭‬ ‭Already‬‭had‬‭some‬‭switches‬‭on‬‭and‬‭off.‬ ‭○‬ ‭**Pluripotent‬‭-‬‭Can‬‭now‬‭do‬‭many‬‭things,‬‭but‬‭not‬‭all.‬ ‭DNA‬‭Technology‬‭Ch‬‭12‬‭(pp.‬‭216-237)‬ ‭ ‬‭.‬‭Define‬‭and‬‭explain‬‭recombinant‬‭DNA‬‭technology.‬ 8 ‭Recombinant‬‭DNA:‬ ‭-‬ ‭When‬‭DNA‬‭from‬‭2‬‭different‬‭sources‬‭are‬‭combined,‬‭they‬‭are‬‭called‬‭recombinant‬‭DNA.‬ ‭Techniques:‬ ‭-‬ ‭Scientists‬‭use‬‭bacterial‬‭plasmids‬‭to‬‭carry‬‭a‬‭gene,‬‭and‬‭are‬‭key‬‭to‬‭gene‬‭cloning.‬ ‭-‬ ‭ ecombinant‬‭DNA‬‭are‬‭used‬‭in‬‭a‬‭variety‬‭of‬‭techniques,‬‭such‬‭as‬‭gene‬‭cloning‬‭and‬ R ‭therefore‬‭the‬‭making‬‭of‬‭many‬‭proteins/molecules‬‭such‬‭as‬‭insulin‬‭or‬‭HGH.‬ ‭ ‬‭.‬‭Determine‬‭how‬‭genes‬‭are‬‭cloned‬‭in‬‭bacteria,‬‭and‬‭distinguish‬‭between‬‭the‬‭processes‬‭of‬ 9 ‭transformation,‬‭transduction,‬‭and‬‭conjugation.‬ ‭How‬‭genes‬‭are‬‭cloned:‬ ‭-‬ ‭DNA‬‭from‬‭2‬‭sources‬‭joined,‬‭resulting‬‭in‬‭recombinant‬‭DNA‬‭plasmids‬ ‭-‬ ‭Said‬‭plasmids‬‭are‬‭mixed‬‭with‬‭bacteria‬ ‭-‬ ‭Each‬‭bacteria‬‭goes‬‭through‬‭cell‬‭division‬‭and‬‭forms‬‭a‬‭clone‬‭of‬‭the‬‭original‬‭gene‬ ‭-‬ ‭Then‬‭these‬‭are‬‭grown‬‭in‬‭tanks.‬ ‭Transduction:‬ ‭-‬ ‭A‬‭fragment‬‭of‬‭DNA‬‭from‬‭another‬‭bacterial‬‭cell‬‭is‬‭inserted‬‭into‬‭the‬‭cell.‬ ‭Translation:‬ ‭-‬ ‭A‬‭fragment‬‭of‬‭DNA‬‭enters‬‭the‬‭cell‬‭from‬‭another‬‭bacterial‬‭cell.‬ ‭Conjugation:‬ ‭-‬ ‭Donor‬‭gives‬‭DNA‬‭to‬‭the‬‭recipient‬‭cell,‬‭and‬‭their‬‭DNA‬‭mixes.‬ ‭-‬ ‭10‬‭.‬‭Determine‬‭the‬‭significance,‬‭uses,‬‭and‬‭roles‬‭of‬‭plasmids‬‭and‬‭restriction‬‭enzymes‬‭in‬‭genetic‬ ‭recombination,‬‭using‬‭the‬‭following‬‭terms:‬ ‭vector‬ ‭DNA‬‭splicing‬‭-‬‭restriction‬‭enzymes‬‭to‬‭cut‬‭DNA,‬‭which‬‭then‬‭allows‬‭for‬‭another‬‭gene‬‭to‬‭be‬ ‭squeezed‬‭between‬‭a‬‭sequence.‬ ‭DNA‬‭ligase‬‭-‬‭Glues‬‭nucleotides‬‭together‬‭and‬‭acts‬‭as‬‭a‬‭final‬‭check.‬ ‭Recombinant‬‭DNA‬‭-‬‭DNA‬‭from‬‭2‬‭different‬‭sources.‬ ‭restriction‬‭enzymes‬‭-‬‭Enzymes‬‭that‬‭cut‬‭DNA‬‭for‬‭isolation‬ ‭sticky‬‭ends‬‭-‬‭when‬‭a‬‭DNA‬‭is‬‭cut,‬‭it‬‭has‬‭a‬‭few‬‭nucleotides‬‭that‬‭have‬‭no‬‭other‬‭strand.‬ ‭blunt‬‭ends‬‭-‬‭ends‬‭of‬‭a‬‭sequence‬‭that‬‭do‬‭not‬‭have‬‭excess‬‭ends.‬ ‭cloning‬‭of‬‭bacteria‬‭-‬‭when‬‭two‬‭different‬‭DNA‬‭are‬‭cut,‬‭then‬‭they‬‭are‬‭separately‬‭recombined.‬‭Then‬ ‭they‬‭are‬‭mixed‬‭with‬‭bacteria,‬‭which‬‭are‬‭then‬‭grown‬‭in‬‭tanks‬‭due‬‭to‬‭cell‬‭division.‬ ‭ 1‬‭.‬‭Perform/use‬‭Polymerase‬‭Chain‬‭Reaction‬‭(PCR)‬‭technology‬‭to‬‭produce‬‭multiple‬‭copies‬‭of‬‭a‬ 1 ‭desired‬‭gene,‬‭to‬‭investigate‬‭a‬‭scientific‬‭problem.‬ ‭PCR‬‭:‬ ‭-‬ ‭DNA‬‭sample‬‭is‬‭mixed‬‭with‬‭nucleotides,‬‭DNA‬‭polymerase,‬‭primers,‬‭and‬‭other‬‭stuff.‬ ‭-‬ ‭The‬‭solution‬‭is‬‭heated‬‭(separates‬‭DNA)‬‭and‬‭cooled‬‭(reforms‬‭DNA)‬ ‭-‬ ‭Results‬‭in‬‭the‬‭DNA‬‭growing‬‭really‬‭fast.‬ ‭Primers:‬ ‭Chemically‬‭made‬‭1-strand‬‭DNA‬‭that‬‭targets‬‭desired‬‭sequence.‬ ‭Gene‬‭cloning‬‭-‬‭the‬‭duplication‬‭of‬‭a‬‭gene:‬ ‭-‬ ‭DNA‬‭from‬‭2‬‭sources‬‭joined‬‭results‬‭in‬‭recombinant‬‭DNA‬‭plasmids.‬ ‭-‬ ‭Recombinant‬‭DNA‬‭mixed‬‭with‬‭bacteria‬ ‭-‬ ‭Each‬‭bacteria‬‭does‬‭cell‬‭division‬‭to‬‭make‬‭a‬‭clone‬‭with‬‭the‬‭recombinant‬‭plasmid‬ ‭-‬ ‭The‬‭transgenic‬‭bacteria‬‭with‬‭the‬‭gene‬‭of‬‭interest‬‭is‬‭then‬‭grown‬‭in‬‭tanks.‬ ‭The‬‭gene‬‭could‬‭also‬‭be‬‭used‬‭in‬‭other‬‭experiments.‬ ‭ robe‬‭:‬ P ‭A‬‭probe‬‭is‬‭a‬‭short,‬‭single-stranded‬‭DNA‬‭or‬‭RNA‬‭sequence‬‭that‬‭is‬‭used‬‭to‬‭detect‬‭the‬ ‭presence‬‭of‬‭a‬‭complementary‬‭nucleotide‬‭sequence‬‭in‬‭a‬‭sample.‬‭Probes‬‭are‬‭often‬‭labeled‬ ‭with‬‭radioactive,‬‭fluorescent,‬‭or‬‭enzymatic‬‭markers‬‭to‬‭allow‬‭visualization.‬ ‭ 2‬‭.‬‭Perform‬‭the‬‭technology‬‭of‬‭using‬‭gel‬‭electrophoresis‬‭to‬‭solve‬‭a‬‭crime‬‭or‬‭paternity‬‭case.‬ 1 ‭Determine‬‭how‬‭gel‬‭electrophoresis‬‭is‬‭used‬‭to‬‭separate‬‭DNA,‬‭how‬‭electrophoresis‬‭works,‬‭and‬ ‭how‬‭current‬‭applications‬‭of‬‭DNA‬‭fingerprinting‬‭and‬‭profiling‬‭technology‬‭are‬‭used,‬‭with‬‭the‬ ‭following‬‭terms:‬ ‭Preparing‬‭the‬‭Gel‬‭Bed‬ ‭-‬ ‭Close‬‭off‬‭the‬‭open‬‭ends‬‭of‬‭a‬‭gel‬‭bed‬‭by‬‭using‬‭masking‬‭tape-‬‭extend‬‭the‬‭tape‬‭over‬‭the‬ ‭sides‬‭and‬‭bottom‬‭edge‬‭of‬‭the‬‭bed.‬ ‭-‬ ‭Fold‬‭the‬‭extended‬‭edges‬‭of‬‭the‬‭tape‬‭back‬‭onto‬‭the‬‭sides‬‭and‬‭bottom.‬ ‭Place‬‭the‬‭blue‬‭comb‬‭in‬‭the‬‭notches‬‭closest‬‭to‬‭the‬‭end‬‭of‬‭the‬‭tray‬ ‭Casting‬‭the‬‭Gel‬ ‭1.‬ ‭Dispense‬‭cooled‬‭agarose‬‭solution‬‭into‬‭the‬‭bed.‬‭Make‬‭sure‬‭the‬‭bed‬‭is‬‭on‬‭a‬‭level‬‭surface‬ ‭and‬‭it‬‭is‬‭not‬‭disturbed‬‭once‬‭the‬‭solution‬‭is‬‭poured.‬ ‭2.‬ ‭Allow‬‭the‬‭gel‬‭to‬‭completely‬‭solidify.‬ ‭Preparing‬‭the‬‭Solidified‬‭Gel‬‭for‬‭Electrophoresis‬ ‭1.‬ ‭Slowly‬‭remove‬‭the‬‭tape.‬‭Be‬‭careful‬‭not‬‭to‬‭damage‬‭or‬‭tear‬‭gel‬‭when‬‭removing‬‭tape.‬ ‭2.‬ ‭Remove‬‭the‬‭comb‬‭by‬‭slowly‬‭pulling‬‭it‬‭straight‬‭up.‬ ‭3.‬ ‭Orient‬‭the‬‭gel‬‭tray‬‭into‬‭the‬‭apparatus‬‭so‬‭that‬‭the‬‭sample‬‭wells‬‭are‬‭closest‬‭to‬‭the‬‭negative‬ ‭(black)‬‭electrode.‬ ‭4.‬ ‭Fill‬‭the‬‭chamber‬‭of‬‭the‬‭electrophoresis‬‭apparatus‬‭with‬‭a‬‭diluted‬‭buffer.‬‭The‬‭solidified‬‭gel‬ ‭should‬‭be‬‭completely‬‭submerged‬‭under‬‭the‬‭buffer.‬ ‭Gel‬‭Loading‬ ‭You‬‭will‬‭be‬‭using‬‭a‬‭"Quickstrip"‬‭sample‬‭that‬‭contains‬‭the‬‭5‬‭samples‬‭needed‬‭for‬‭this‬‭experiment.‬ ‭1.‬ ‭In‬‭each‬‭of‬‭the‬‭wells‬‭of‬‭the‬‭gel,‬‭use‬‭a‬‭micropipette‬‭to‬‭load‬‭samples‬‭into‬‭the‬‭wells.‬ ‭Running‬‭the‬‭Gel‬ ‭1.‬ ‭After‬‭the‬‭DNA‬‭samples‬‭are‬‭loaded,‬‭carefully‬‭snap‬‭down‬‭the‬‭chamber‬‭cover‬‭onto‬‭the‬ ‭electrode‬‭terminals.‬ ‭-‬ ‭Make‬‭sure‬‭that‬‭the‬‭negative‬‭(black)‬‭and‬‭positive‬‭(red)‬‭indicators‬‭on‬‭the‬‭cover‬‭and‬‭the‬ ‭apparatus‬‭chamber‬‭are‬‭properly‬‭oriented.‬ ‭2.‬ ‭Input‬‭the‬‭power‬‭sources.‬ ‭3.‬ ‭Set‬‭the‬‭power‬‭source‬‭at‬‭125‬‭volts‬‭and‬‭let‬‭the‬‭gel‬‭run.‬‭When‬‭current‬‭is‬‭flowing‬‭properly,‬ ‭you‬‭should‬‭see‬‭bubbles‬‭forming‬‭on‬‭the‬‭electrodes.‬‭Run‬‭the‬‭electrophoresis‬‭for‬‭25‬ ‭minutes.‬ ‭4.‬ ‭After‬‭the‬‭electrophoresis‬‭is‬‭completed,‬‭turn‬‭off‬‭the‬‭power,‬‭unplug‬‭the‬‭power‬‭source,‬‭and‬ ‭remove‬‭the‬‭cover.‬ ‭5.‬ ‭Remove‬‭the‬‭gel‬‭on‬‭its‬‭bed‬‭from‬‭the‬‭apparatus.‬ ‭Staining‬‭and‬‭Visualizing‬‭the‬‭Gel‬ ‭-‬ ‭The‬‭gel‬‭must‬‭be‬‭exposed‬‭to‬‭a‬‭staining‬‭solution,‬‭INSTASTAIN,‬‭that‬‭binds‬‭to‬‭the‬‭DNA‬ ‭fragments‬‭in‬‭the‬‭gel.‬‭The‬‭stained‬‭gel‬‭is‬‭then‬‭exposed‬‭to‬‭light‬‭(a‬‭light‬‭box)‬‭and‬‭the‬ ‭separated‬‭DNA‬‭fragments‬‭are‬‭seen‬‭as‬‭visible‬‭bands.‬ ‭-‬ ‭ hese‬‭are‬‭the‬‭bands‬‭you‬‭may‬‭have‬‭seen‬‭in‬‭examples‬‭of‬‭DNA‬‭fingerprinting.‬‭Each‬‭band‬ T ‭is‬‭a‬‭piece‬‭of‬‭DNA‬‭of‬‭a‬‭different‬‭size‬‭that‬‭was‬‭originally‬‭cut‬‭with‬‭restriction‬‭enzymes.‬‭After‬ ‭staining,‬‭the‬‭gel‬‭can‬‭be‬‭photographed‬‭for‬‭a‬‭permanent‬ ‭Staining‬‭with‬‭DNA‬‭Blue‬‭InstaStain‬‭Card:‬ ‭1.‬‭After‬‭electrophoresis‬‭is‬‭completed,‬‭slide‬‭the‬‭gel‬‭into‬‭the‬‭gel-staining‬‭tray.‬ ‭2.‬‭Moisten‬‭the‬‭gel‬‭with‬‭an‬‭electrophoresis‬‭buffer,‬‭with‬‭a‬‭pipet.‬ ‭3.‬‭Wearing‬‭gloves,‬‭place‬‭the‬‭blue‬‭dye‬‭side‬‭of‬‭the‬‭DNA‬‭Blue‬‭InstaStain‬‭card‬‭on‬‭the‬‭moistened‬ ‭gel.‬ ‭4.‬‭Firmly‬‭run‬‭your‬‭gloved‬‭fingers‬‭over‬‭the‬‭entire‬‭surface‬‭of‬‭the‬‭DNA‬‭InstaStain‬‭card‬‭several‬ ‭times‬ ‭ NA‬‭fragment‬‭size‬‭-‬‭Fragments‬‭of‬‭DNA‬‭displayed‬‭in‬‭a‬‭gel‬‭electrophoresis‬‭bed,‬‭the‬‭size‬‭of‬ D ‭which‬‭can‬‭be‬‭told‬‭based‬‭on‬‭how‬‭close‬‭the‬‭band‬‭is‬‭to‬‭the‬‭positive‬‭charge.‬ ‭Restriction‬‭fragments‬‭-‬ ‭DNA‬‭that‬‭has‬‭been‬‭cut‬‭by‬‭a‬‭restriction‬‭enzyme.‬ ‭Agarose‬‭gel‬‭-‬‭the‬‭gelatin-like‬‭substance‬‭that‬‭makes‬‭up‬‭the‬‭bed‬‭of‬‭an‬‭gel‬‭electrophoresis‬‭bed.‬ ‭DNA‬‭bands‬‭-‬‭The‬‭bands‬‭of‬‭DNA‬‭that‬‭display‬‭the‬‭DNA‬‭profile‬‭of‬‭a‬‭bed,‬‭and‬‭can‬‭be‬‭used‬‭to‬ ‭compare‬‭DNA.‬ ‭DNA‬‭band‬‭migration‬‭from‬‭negative‬‭to‬‭positive‬‭-‬ ‭The‬‭migration‬‭of‬‭DNA‬‭from‬‭the‬‭negative‬‭well‬ ‭to‬‭the‬‭positive‬‭well.‬‭This‬‭is‬‭due‬‭to‬‭the‬‭negative‬‭charged‬‭phosphate‬‭the‬‭DNA’s‬‭sugar-phosphate‬ ‭backbone‬‭has,‬‭and‬‭causes‬‭the‬‭smaller‬‭pieces‬‭to‬‭move‬‭closer‬‭to‬‭the‬‭positive‬‭charge.‬ ‭Forensics‬‭-‬‭A‬‭field‬‭in‬‭which‬‭DNA‬‭testing‬‭has‬‭dramatically‬‭changed‬‭to‬‭confirm‬‭things‬‭such‬‭as‬ ‭criminal‬‭or‬‭paternity‬‭cases,‬‭tracking‬‭of‬‭endangered‬‭animals,‬‭ect.‬ ‭Paternity‬‭-‬‭Another‬‭field‬‭that‬‭has‬‭changed‬‭due‬‭to‬‭DNA‬‭profiling‬‭because‬‭it‬‭uses‬‭DNA‬‭to‬‭track‬ ‭who‬‭the‬‭parents‬‭are,‬‭and‬‭therefore‬‭solve‬‭who‬‭a‬‭father‬‭is.‬ ‭Genetic‬‭Screening‬‭-‬‭The‬‭screening‬‭of‬‭one’s‬‭DNA‬‭to‬‭go‬‭into‬‭a‬‭database.‬ ‭ 3‬‭.‬‭Describe‬‭the‬‭goals‬‭of‬‭the‬‭Human‬‭Genome‬‭Project‬‭and‬‭explain‬‭the‬‭significance‬‭in‬‭the‬ 1 ‭sequencing‬‭of‬‭the‬‭genomes‬‭of‬‭other‬‭organisms‬ ‭The‬‭project‬‭aimed‬‭to:‬ ‭-‬ ‭sequence‬‭the‬‭entire‬‭human‬‭genome,‬ ‭-‬ ‭identify‬‭and‬‭map‬‭all‬‭human‬‭genes‬ ‭-‬ ‭improve‬‭tools‬‭for‬‭analyzing‬‭DNA‬ ‭SIgnificance‬‭to‬‭other‬‭species:‬ ‭-‬ ‭Understand‬‭evolutionary‬‭relationships‬‭and‬‭genetic‬‭similarities‬‭between‬‭species.‬ ‭ 4.‬‭Be‬‭able‬‭to‬‭perform‬‭and‬‭interpret‬‭the‬‭following‬‭gene‬‭technologies‬‭using‬‭data,‬‭activities,‬‭or‬ 1 ‭DNA‬‭fingerprinting,‬‭restriction‬‭enzyme‬‭analysis,‬‭transgenic‬‭organisms,‬‭cloning,‬‭PCR‬ ‭15‬‭.‬‭Explain‬‭the‬‭following‬‭applications‬‭of‬‭DNA‬‭technology,‬‭end‬‭the‬‭ethical‬‭concerns‬‭of‬‭each‬ ‭Tech‬ ‭Pro‬ ‭Con‬ ‭ iotech‬‭Farming‬‭/‬‭genetically‬ B ‭Could‬‭solve‬‭hunger‬‭and‬ ‭ ould‬‭also‬‭be‬‭unhealthy‬‭and‬ C ‭engineered‬‭crops.‬ ‭ tarvation‬‭issues‬‭for‬‭the‬‭world‬ ‭unsafe‬‭for‬‭consumption.‬‭Can‬ s ‭ lso‬‭lower‬‭genetic‬‭diversity‬ a ‭key‬‭for‬‭evolution‬‭and‬‭natural‬ ‭selection.‬‭Could‬‭also‬‭make‬ ‭superweeds‬‭if‬‭extremely‬ ‭resistant‬‭plants‬‭pollinate‬‭and‬ ‭spread‬‭traits‬‭to‬‭weeds.‬ ‭ enetically‬‭engineered‬ G ‭ ould‬‭prove‬‭an‬‭excellent‬‭food‬ C C ‭ ould‬‭also‬‭be‬‭unhealthy‬‭and‬ ‭animals‬ ‭source‬ ‭have‬‭worse‬‭ethical‬‭cons‬‭due‬ ‭to‬‭experimentation‬‭on‬‭living‬ ‭animals.‬‭Can‬‭also‬‭lower‬ ‭genetic‬‭diversity‬‭key‬‭for‬ ‭evolution‬‭and‬‭natural‬ ‭selection.‬ ‭ roduction‬‭of‬‭insulin,‬‭growth‬ p ‭ ould‬‭save‬‭lives‬‭and‬‭help‬ C ‭ ould‬‭fail‬‭and‬‭injure,‬‭can‬‭be‬ C ‭hormone,‬‭vaccines‬ ‭with‬‭quality‬‭of‬‭life.‬ ‭monopolized‬‭and‬‭overpriced,‬ ‭could‬‭be‬‭misused‬‭by‬‭people‬ ‭and‬‭parents-‬‭who‬‭gets‬‭to‬ ‭decide?‬‭The‬‭fetus?‬ ‭CRISPR‬ ‭ ould‬‭save‬‭lives‬‭and‬‭detect‬ c ‭ nethically‬‭alter‬‭embryos‬‭and‬ u ‭early‬‭illness‬‭for‬‭preparation‬ ‭lower‬‭genetic‬‭diversity,‬‭and‬ CRIPR Technology Biol… ‭could‬‭allow‬‭parents‬‭to‬‭chose‬ ‭Its‬‭so‬‭official‬‭looking‬ ‭their‬‭child‬‭which‬‭would‬‭be‬ ‭immoral.‬

Use Quizgecko on...
Browser
Browser