Biología 2023 Past Paper PDF
Document Details
![BoomingSuprematism7757](https://quizgecko.com/images/avatars/avatar-4.webp)
Uploaded by BoomingSuprematism7757
Franciscan University of Steubenville
2023
Tags
Summary
This document is a past paper from Univ. Francisco Servian, covering biological and chemical topics of 2023. The paper explains the structure, function, and interaction of biological molecules, along with the roles of various bioelements and possible disorders associated with deficiencies.
Full Transcript
# BIOLOGIA 2023 ## COMPONENTES QUIMICOS DE LA CELULA - **Bioquímica estructural:** estudia la composición, conformación, configuración y estructura de las moléculas de la materia viva, relacionándolas con su función biológica. - **Bioquímica metabólica o metabolismo:** estudia las transformaciones...
# BIOLOGIA 2023 ## COMPONENTES QUIMICOS DE LA CELULA - **Bioquímica estructural:** estudia la composición, conformación, configuración y estructura de las moléculas de la materia viva, relacionándolas con su función biológica. - **Bioquímica metabólica o metabolismo:** estudia las transformaciones, funciones y reacciones químicas que sufren o llevan a cabo las moléculas de la materia viva, así como los mecanismos de regulación de esas transformaciones. - **Biología molecular o genética molecular:** estudia la química de los procesos y las estructuras de las moléculas implicadas en el almacenamiento, la transmisión y la expresión de información genética, así como los mecanismos que los regulan. ## 2.1 BIOELEMENTOS Debido al origen evolutivo común de la materia viva, su química es similar en toda la escala filogenética. En la composición de los seres vivos aparecen una veintena de elementos químicos que son esenciales para el desarrollo de la vida. A estos elementos químicos que constituyen los seres vivos se les denomina bioelementos. También reciben el nombre de elementos biogénicos o biogenésicos. Se pueden clasificar, según su abundancia, en tres grandes grupos: - **Bioelementos primarios:** H, O, C, N. Son los más abundantes. Representan un 99.3% del total de átomos del cuerpo humano. Con diferencia, el hidrógeno es el más importante, junto con el oxígeno, ya que ambos forman parte de la biomolécula más abundante de los organismos, el agua. - **Bioelementos secundarios:** Ca, P, K, S, Na, Cl, Mg, Fe. Constituyen prácticamente el 0.7% del total de átomos del cuerpo humano. - **Oligoelementos o bioelementos traza:** Mn, I, Cu, Co, Cr, Zn, F, Mo, Se y otros. Aunque aparecen sólo en trazas o en cantidades ínfimas, su presencia es esencial para el correcto funcionamiento del organismo. Su ausencia determina la aparición de enfermedades carenciales, o síntomas de déficit, que se definirán en el siguiente apartado. Otro criterio de clasificación de los bioelementos es la función que desempeñan en el organismo. Así, se pueden establecer diferentes grupos, con distintas funciones: 1. **Plástica o estructural:** H, O, C, N, P, S. Colaboran en el mantenimiento de la estructura del organismo. 2. **Esquelética:** Ca, Mg, P, F, Si. Confieren rigidez. 3. **Energética:** C, O, H, P. Forman parte de las moléculas energéticas. 4. **Catalítica:** Fe, Mn, I, Cu, Co, Zn, Mo, Se. Forman parte de las enzimas, que catalizan reacciones y procesos bioquímicos. 5. **Osmótica y electrolítica:** Na+, K+ y Cl, principalmente. Mantienen y regulan los fenómenos osmóticos y de potencial químico y electrónico. Como la Bioquímica pretende estudiar y explicar la vida desde el punto de vista molecular, el conocimiento de las biomoléculas o moléculas de los seres vivos es un punto de partida necesario, ya que la vida se nos presenta como el resultado de las propiedades e interacciones de tales biomoléculas. En el origen, el universo estaba formado fundamentalmente por hidrógeno y helio. Durante millones de años se produjeron reacciones termonucleares que condujeron a la aparición de los otros elementos químicos más pesados. Estos elementos se distribuyeron por todo el universo, dando lugar, con el paso del tiempo, a la composición química actual de la materia. Los elementos más abundantes en la actualidad siguen siendo hidrógeno y helio, y a continuación, oxígeno, neón, carbono y nitrógeno. Hace unos 5000 millones de años, posiblemente, aparecieron sobre la Tierra las primeras formas primitivas de vida. Desde entonces, el proceso evolutivo ha transcurrido hasta alcanzar el grado actual de diversidad y diferenciación, lo que ha significado un alto grado de adaptación y selección. Es interesante saber que aunque se conocen más de 100 elementos químicos diferentes, en la corteza terrestre son ocho los más abundantes en cuanto a número de átomos, representando más del 98% de los átomos totales (O, Si, Al, Fe, Ca, Na, K, Mg). Por otra parte, si consideramos la abundancia relativa de los átomos que actualmente constituyen las biomoléculas, en concreto las del ser humano, nos encontramos con que sólo cuatro elementos representan más del 99% de todos los átomos (H, O, C, N). Es un hecho llamativo que ninguno de ellos, excepto el oxígeno, se encuentre entre los ocho elementos más abundantes en la corteza terrestre. ¿Por qué han sido precisamente estos cuatro elementos los que han conformado las biomoléculas? De su pequeño tamaño y de su estructura electrónica, se pueden deducir las siguientes posibilidades: ## 2.1.1 Enfermedades carenciales Es lógico que la deficiencia de cualquiera de los bioelementos encuadrados en los grupos primario y secundario, determine alteraciones patológicas importantes en el organismo humano. Un ejemplo típico es el de la anemia producida por carencia o deficiencia de Fe. Sin embargo, se podría pensar que el déficit de alguno de los oligoelementos no debería representar un problema importante, dada la mínima cantidad de estos oligoelementos que el organismo necesita. Nada más lejos de la realidad, ya que la expresión enfermedad carencial adquiere verdadera importancia en lo que se refiere a estos elementos, debido a la importancia de su función. En la **Tabla 2-1** se pueden observar algunas disfunciones producidas por la escasez o ausencia de estos elementos (**Recuadro 2-1**). | Cinc | Retraso del crecimiento, diarrea, alopecia, dermatitis, disfunción inmunitaria, espermatogénesis defectuosa. | |---|---| | Cobalto | Anemia, retraso en el crecimiento. | | Cobre | Anemia, defectos esqueléticos, desmielinización, degeneración del sistema nervioso, lesiones cardiovasculares, hipopigmentación. | | Cromo | Trastornos en la tolerancia a la glucosa, encefalopatías, neuropatías. | | Flúor | Caries, alteraciones en la estructura ósea. | | Manganeso | Retraso del crecimiento, defectos en la coagulación, dermatitis. | | Molibdeno | Síntomas similares al bocio. | | Selenio | Miocardiopatías, disfunción muscular. | | Yodo | Bocio (**Recuadro 2-1**). | ### Recuadro 2-1. BOCIO Se denomina bocio al aumento de volumen de la glándula tiroides (tiroidomega-lia). La glándula tiroides suele pesar unos 20-30 g, pero en casos de bocio puede llegar a alcanzar hasta 1 kg. De diferentes causas, bocio vascular, enfermedad de Graves, etcétera, la más frecuente es ocasionada por una captación insuficiente del yodo en la dieta. Aunque puede aparecer en cualquier localización, es endémico en las zonas geográficas montañosas (Andes, Himalaya) donde el escaso aporte de yodo tiene su origen en el predominio de determinados cultivos, las propiedades químicas del suelo o la dificultad de las comunicaciones, que impiden diversificar el origen de los alimentos. A este respecto, el Dr. Marañón señalaba, ya en 1927, que «el bocio es un problema de civilización, y su remedio, caminos». En España, esta enfermedad presentó una alta prevalencia en zonas aisladas y deprimidas económicamente, como Las Hurdes (Extremadura). Las necesidades diarias de yodo se cifran en 100-150 mg, que se aportan por los alimentos de la dieta. Con carácter preventivo, se pueden suplementar con yodo ciertos alimentos de consumo general, como pan y aceite, pero lo más generalizado es la utilización de sal yodada en la dieta. Además de la escasez de yodo en la alimentación, se han descrito ciertos elementos cuya presencia dificulta la correcta captación del yodo por el tiroides. Son las denominadas sustancias o elementos bociógenos. Entre ellos se encuentran el calcio, el litio, el flúor y el cobalto; asimismo, son bociógenas las plantas del género Brassica (col, coliflor, rábanos, coles de Bruselas) o las nueces. El bocio está epidemiológicamente asociado con el cretinismo y ciertas formas de sordomudez y de deficiencia mental. Las formas más graves son las que comienzan durante el desarrollo fetal, por lo que el déficit de yodo es peligroso en mujeres en edad fecunda. En algunas ocasiones, un exceso de yodo puede originar la existencia de un bocio endémico. Es el caso de la isla de Hokkaido, en el archipiélago japonés. Un excesivo consumo de yodo bloquea la liberación de las hormonas tiroideas y la organificación del elemento. En otras situaciones, la administración de ciertos medicamentos (sulfonilureas, ácido paraaminosalicílico, etc.) puede producir bocio (iatrogénico). ## 2.2 BIOMOLÉCULAS Análogamente a lo que ocurre con los bioelementos, las biomoléculas son las moléculas constituyentes de los seres vivos. Atendiendo a su naturaleza química, las biomoléculas se pueden clasificar en dos grandes grupos: 1. **Biomoléculas inorgánicas:** agua (la biomolécula más abundante), gases (oxígeno, dióxido de carbono), sales inorgánicas (aniones, como fosfato y bicarbonato, y cationes, como amonio). 2. **Biomoléculas orgánicas:** glúcidos (como glucosa o glucógeno), lípidos (como triglicéridos o colesterol), proteínas (como la hemoglobina o las enzimas), ácidos nucleicos (como ADN [ácido desoxirribonucleico] o ARN [ácido ribonucleico]), metabolitos (como ácido pirúvico o ácido láctico), etcétera. ### 2.2.4 **Grado de complejidad** En grado creciente de complejidad, las moléculas se pueden clasificar en: 1. **Precursores**, con un peso molecular inferior a 50 Da, como el H₂O, el CO₂ o el NH₃. 2. **Intermedios metabólicos**, con un peso molecular de 50-200 Da, como son el piruvato, el oxalacetato o el citrato. 3. **Unidades estructurales** (100-300 Da) o unidades constitutivas de las macromoléculas, entre las que destacan los monosacáridos (en los polisacáridos), los aminoácidos (en las proteínas), los nucleótidos (en los ácidos nucleicos), el glicerol y los ácidos grasos (en las grasas), etcétera. 4. **Macromoléculas** (10³-10⁹ Da), como los polisacáridos, proteínas, ácidos nucleicos, grasas, etcétera. Además de los apartados precedentes se puede citar un nivel superior de complejidad: el de las supramacromoléculas (10⁶-10¹² Da). Si las biomoléculas se caracterizaban por tener enlaces constitutivos cuya naturaleza es siempre covalente, en las supramacromoléculas los distintos componentes individuales se integran mediante interacciones no covalentes de tipo iónico, hidrófobo, de van der Waals, etcétera. Ejemplos típicos pueden ser los ribosomas (ARN y proteínas), la cromatina (ADN y proteínas) o las membranas (lípidos y proteínas). Tanto las macromoléculas como las supramacromoléculas suelen presentar varias posibilidades de disposición estructural y su actividad biológica suele coincidir con la forma nativa que, a su vez, es la que presenta una mayor estabilidad termodinámica. ## AGUA ### Recuadro 3-1. ALTERACIONES DEL EQUILIBRIO HÍDRICO El control del volumen de los compartimentos acuosos, su presión osmótica, composición, etcétera, es un proceso muy bien regulado, en el que intervienen, entre otras, la hormona de la neurohipófisis, vasopresina (reabsorción renal del agua), la hormona de la corteza suprarrenal, aldosterona (reabsorción renal del sodio) y el factor o péptido natriurético auricular (ANP), hormona liberada por las paredes auriculares del corazón, con efectos combinados, que globalmente favorecen la eliminación urinaria de sodio y agua, así como el descenso de la presión arterial. Cuando ocurre un desequilibrio y los mecanismos de regulación no pueden resolver el problema, se producen alteraciones del equilibrio o metabolismo hídrico, como son la deshidratación o disminución del volumen acuoso y la sobrehidratación o exceso de volumen acuoso en el organismo. Estos trastornos hídricos pueden venir acompañados de alteraciones en la concentración extracelular de electrólitos. Así, pueden producirse hidrataciones o deshidrataciones isotónicas (si no existe modificación en la presión osmótica de los electrólitos), hipertónicas (si se da un aumento en la concentración) e hipotónicas (si hay una disminución). En estos casos, el ion que usualmente sufre una modificación en su concentración normal es el catión sodio. En general, el organismo puede tolerar hasta una alteración del 10% en el contenido de agua. Por encima de este porcentaje puede sobrevenir la muerte del individuo, sobre todo en casos de deshidratación, en los que para compensar la pérdida de agua intersticial se ha de recurrir al agua intracelular o plasmática, que es vital para el correcto funcionamiento del organismo. Los síntomas de una deshidratación pueden ser: debilidad, vértigo, náuseas, dolor de cabeza, taquicardia, vasoconstricción, hipotensión, entre otros. En una sobrehidratación pueden aparecer: edema, dolor de cabeza, náuseas, hipertensión, etcétera. ## Acidosis La acidosis o disminución del pH en el organismo puede clasificarse, según lo anteriormente expuesto, en acidosis metabólica y acidosis respiratoria. ### a) Acidosis metabólica #### Causas. Puede deberse a: 1) Defecto renal en la excreción de protones o reabsorción de bicarbonato (insuficiencia renal; acidosis tubular renal). 2) Pérdidas de bicarbonato (diarreas alcalinas; fístulas intestinales; vómitos de contenido intestinal). 3) Aumento en el aporte de ácidos (producción metabólica excesiva, como en la diabetes mellitus, en el ayuno o en el ejercicio anaerobio; ingesta de tóxicos como metanol o salicililatos). 4) Hipoaldosteronismo (Enfermedad de Addison). ### b) Acidosis respiratoria #### Causas. Se origina por insuficiencia en la ventilación pulmonar, lo que determina que el equilibrio [3.5] se desplace hacia la derecha, liberándose iones hidrógeno. Esta hipoventilación puede deberse a: 1) Lesiones pulmonares (edema pulmonar, enfisema, neumonía, bronquitis). 2) Ingestión de drogas depresoras del centro respiratorio (barbitúricos). 3) Respiración de aire con elevado porcentaje de CO₂ ## Alcalosis La alcalosis o incremento del pH en el medio interno también se puede clasificar como alcalosis metabólica o respiratoria, según sus causas: ### a) Alcalosis metabólica #### Causas. Puede deberse a: 1) Aumento de las pérdidas de ácidos (vómitos continuos de origen gástrico, con pérdida de HCl). 2) Administración de diuréticos (aumento de la reabsorción de Na y excreción de H¹). 3) Ingestión de compuestos alcalinos (fármacos alcalinos para tratamiento, p. ej., de gastritis o úlceras gastroduodenales). 4) Hiperaldosteronismo (síndrome de Conn). ### b) Alcalosis respiratoria #### Causas. Este tipo de alcalosis se produce por hiperventilación pulmonar. En este caso, el equilibrio [3.5] se desplaza hacia la izquierda, ya que se elimina anhídrido carbónico, con lo que disminuye la concentración de protones y aumenta el pH. La hiperventilación puede ser originada por: 1) Estímulo del centro respiratorio (trastornos de ansiedad, neurosis, crisis nerviosas). 2) Hipoxia (respiración en altitud, anemia, insuficiencia cardíaca). + En cuanto a las funciones que desempeñan los iones, se puede hablar de las específicas y de las inespecíficas. Las primeras son diferentes, en función del ion de que se trate. Así, por ejemplo, Na+ y K+ están implicados, entre otros procesos, en el mantenimiento del potencial de membrana; Fe2+, en el transporte de oxígeno; Ca2+, en la contracción muscular, etcétera. Las funciones inespecíficas no dependen de la naturaleza del ion en cuestión, sino de la presencia del mismo. El ejemplo típico es su contribución al mantenimiento de la presión osmótica. En cuanto a las funciones que desempeñan los iones, se puede hablar de las específicas y de las inespecíficas. Las primeras son diferentes, en función del ion de que se trate. Así, por ejemplo, Na+ y K+ están implicados, entre otros procesos, en el mantenimiento del potencial de membrana; Fe2+, en el transporte de oxígeno; Ca2+, en la contracción muscular, etcétera. Las funciones inespecíficas no dependen de la naturaleza del ion en cuestión, sino de la presencia del mismo. El ejemplo típico es su contribución al mantenimiento de la presión osmótica. - miento de todo el organismo. El aumento o la disminución de alguno de ellos por encima o por debajo de límites tolerables, puede suponer un peligro para las funciones vitales. A su vez, la detección de este desequilibrio es un indicador de que puede existir una alteración patológica en el organismo res- ponsable de tal aumento o disminución. Como ejemplo, se pueden citar dos enfermedades en las que está implicada la hormona aldosterona y en las que se produce una alteración en el suero y en la excreción urinaria de las concentraciones de iones sodio y potasio, debido a problemas de reabsorción de estos iones en el riñón. Enfermedad de Addison, en la que existe un nivel bajo de aldosterona (hipoaldosteronismo), lo que provoca poca reab- sorción de ion sodio en el riñón y poca excreción de ion pota- sio en la orina. Ello lleva consigo hiponatremia e hiperpotase- mia. También lleva consigo la aparición de acidosis metabólica. Sindrome de Conn, en el que se encuentra un alto nivel de aldosterona (hiperaldosteronismo), lo que provoca una ele- vada reabsorción renal de ion sodio y elevada excreción de ion potasio. En estas condiciones, se produce una situación de hipernatremia y de hipopotasemia. También se origina un cuadro de alcalosis metabólica. -