Binomial Theorem PDF

Summary

This document explains the binomial theorem for positive integral indices. It details factorial notation, permutations, and combinations. Examples and problems with solutions are also included.

Full Transcript

Binomial Theorem Factorial notation The notation 𝑛! or βŒŠπ‘› represents the product of first 𝑛 natural numbers. We read this symbol as β€˜π‘› factorial’. Thus, 𝑛! = 1 Γ— 2 Γ— 3 Γ— 4 Γ—...Γ— (𝑛 – 1) Γ— 𝑛 = 𝑛 Γ— (𝑛 – 1) Γ—...Γ— 3 Γ— 2 Γ— 1. Example : 1! = 1 2! = 1 Γ— 2 = 2 3! = 1 Γ— 2 Γ— 3 = 6 4! = 1 Γ— 2 Γ— 3 Γ— 4 = 24 5! =...

Binomial Theorem Factorial notation The notation 𝑛! or βŒŠπ‘› represents the product of first 𝑛 natural numbers. We read this symbol as β€˜π‘› factorial’. Thus, 𝑛! = 1 Γ— 2 Γ— 3 Γ— 4 Γ—...Γ— (𝑛 – 1) Γ— 𝑛 = 𝑛 Γ— (𝑛 – 1) Γ—...Γ— 3 Γ— 2 Γ— 1. Example : 1! = 1 2! = 1 Γ— 2 = 2 3! = 1 Γ— 2 Γ— 3 = 6 4! = 1 Γ— 2 Γ— 3 Γ— 4 = 24 5! = 1 Γ— 2 Γ— 3 Γ— 4 Γ— 5 = 120 We define 0! = 1. Note that, 𝑛! = 𝑛 Γ— (𝑛 – 1) Γ—...Γ— 3 Γ— 2 Γ— 1 = 𝑛(𝑛 βˆ’ 1)! 𝑛! = 𝑛(𝑛 βˆ’ 1)! = 𝑛(𝑛 βˆ’ 1)(𝑛 βˆ’ 2)! [Provided (𝑛 β‰₯ 2)] 𝑛! = 𝑛(𝑛 βˆ’ 1)! = 𝑛(𝑛 βˆ’ 1)(𝑛 βˆ’ 2)(𝑛 βˆ’ 3)! [Provided (𝑛 β‰₯ 3)] We can write, 6! = 6 Γ— 5! = 6 Γ— 120 = 720 12! 12Γ—11Γ—10! 10!2! = 10!Γ—2 = 6 Γ— 11 = 66 Permutations A permutation is an arrangement in a definite order of a number of objects taken some or all at a time. The number of permutations of 𝑛 different things taken π‘Ÿ at a time, where repetition is not allowed, is denoted by π‘›π‘ƒπ‘Ÿ and is given by 𝑛! π‘›π‘ƒπ‘Ÿ = (π‘›βˆ’π‘Ÿ)! , where 0 ≀ π‘Ÿ ≀ 𝑛. Combinations The number of combinations of 𝑛 different things taken π‘Ÿ at a time, denoted by π‘›πΆπ‘Ÿ , is given by 𝑛! π‘›πΆπ‘Ÿ = π‘Ÿ!(π‘›βˆ’π‘Ÿ)! , where 0 ≀ π‘Ÿ ≀ 𝑛. Example : 10! 10! 10 Γ— 9 Γ— 8 Γ— 7 Γ— 6! 10𝐢4 = = = = 210 4! (10 βˆ’ 4)! 4! 6! 4 Γ— 3 Γ— 2 Γ— 1 Γ— 6! 10! 10! 10 Γ— 9 Γ— 8 Γ— 7 Γ— 6! 10𝐢6 = = = = 210 6! (10 βˆ’ 6)! 6! 4! 6! Γ— 4 Γ— 3 Γ— 2 Γ— 1 6! 6! 6 Γ— 5 Γ— 4 Γ— 3! 6𝑃3 = = = = 120 (6 βˆ’ 3)! 3! 3! 𝑛! 𝑛! 𝑛𝐢0 = = =1 (𝑛 0! βˆ’ 0)! 1 Γ— 𝑛! 𝑛! 𝑛 Γ— (𝑛 βˆ’ 1)! 𝑛𝐢1 = = =𝑛 1! (𝑛 βˆ’ 1)! 1 Γ— (𝑛 βˆ’ 1)! 𝑛! 𝑛(𝑛 βˆ’ 1)(𝑛 βˆ’ 2)! 𝑛(𝑛 βˆ’ 1) 𝑛𝐢2 = = = 2! (𝑛 βˆ’ 2)! 2! (𝑛 βˆ’ 2)! 2! 𝑛! 𝑛(𝑛 βˆ’ 1)(𝑛 βˆ’ 2)(𝑛 βˆ’ 3)! 𝑛(𝑛 βˆ’ 1)(𝑛 βˆ’ 2) 𝑛𝐢3 = = = 3! (𝑛 βˆ’ 3)! 3! (𝑛 βˆ’ 3)! 3! 𝑛! 𝑛(𝑛 βˆ’ 1)(𝑛 βˆ’ 2)(𝑛 βˆ’ 3)(𝑛 βˆ’ 4)! 𝑛(𝑛 βˆ’ 1)(𝑛 βˆ’ 2)(𝑛 βˆ’ 3) 𝑛𝐢4 = = = 4! (𝑛 βˆ’ 4)! 4! (𝑛 βˆ’ 4)! 4! ……………………………………………………………………………………… 𝑛! 𝑛(𝑛 βˆ’ 1)(𝑛 βˆ’ 2) … [𝑛 βˆ’ (π‘Ÿ βˆ’ 1)] 𝑛(𝑛 βˆ’ 1)(𝑛 βˆ’ 2) … (𝑛 βˆ’ π‘Ÿ + 1) π‘›πΆπ‘Ÿ = = = π‘Ÿ! (𝑛 βˆ’ π‘Ÿ)! π‘Ÿ! π‘Ÿ! ………………………………………………………………………………………………. 𝑛! 𝑛! 𝑛! 𝑛𝐢𝑛 = = = =1 𝑛! (𝑛 βˆ’ 𝑛)! 𝑛! 0! 𝑛! Γ— 1 Some Properties 1) π‘›π‘ƒπ‘Ÿ = π‘Ÿ! π‘›πΆπ‘Ÿ 2) π‘›πΆπ‘Ÿ = π‘›πΆπ‘›βˆ’π‘Ÿ 3) π‘›πΆπ‘Ÿ + π‘›πΆπ‘Ÿβˆ’1 = 𝑛 + 1πΆπ‘Ÿ 4) π‘›πΆπ‘Ÿ = π‘›πΆπ‘˜ β‡’ π‘Ÿ = π‘˜ or π‘Ÿ = 𝑛 βˆ’ π‘˜ π‘›πΆπ‘Ÿ π‘›βˆ’π‘Ÿ+1 5) π‘›πΆπ‘Ÿβˆ’1 = π‘Ÿ Binomial Theorem for Positive Integral Indices Let us have a look at the following identities done earlier: (π‘Ž + 𝑏)0 = 1 , π‘Ž + 𝑏 β‰  0 (π‘Ž + 𝑏)1 = π‘Ž + 𝑏 (π‘Ž + 𝑏)2 = π‘Ž 2 + 2π‘Žπ‘ + 𝑏2 (π‘Ž + 𝑏)3 = π‘Ž 3 + 3π‘Ž 2 𝑏 + 3π‘Žπ‘2 + 𝑏3 (π‘Ž + 𝑏)4 = (π‘Ž + 𝑏)3 (π‘Ž + 𝑏) = π‘Ž 4 + 4π‘Ž 3 𝑏 + 6π‘Ž 2 𝑏2 + 4π‘Žπ‘3 + 𝑏4 In these expansions, we observe that (i) The total number of terms in the expansion is one more than the index. For example, in the expansion of (π‘Ž + 𝑏)2 , number of terms is 3 whereas the index of (π‘Ž + 𝑏)2 is 2. (ii) Powers of the first quantity β€˜π‘Ž ’ go on decreasing by 1 whereas the powers of the second quantity β€˜π‘β€™ increase by 1, in the successive terms. (iii) In each term of the expansion, the sum of the indices of π‘Ž and 𝑏 is the same and is equal to the index of (π‘Ž + 𝑏). Binomial theorem for any positive integer 𝒏 (π‘Ž + 𝑏)𝑛 = 𝑛𝐢0 π‘Ž 𝑛 + 𝑛𝐢1 π‘Ž π‘›βˆ’1 𝑏 + 𝑛𝐢2 π‘Ž π‘›βˆ’2 𝑏 2 + 𝑛𝐢3 π‘Ž π‘›βˆ’3 𝑏 3 + β‹― + π‘›πΆπ‘›βˆ’1 π‘Žπ‘π‘›βˆ’1 + 𝑛𝐢𝑛 𝑏𝑛 = π‘Ž 𝑛 + 𝑛𝐢1 π‘Ž π‘›βˆ’1 𝑏 + 𝑛𝐢2 π‘Ž π‘›βˆ’2 𝑏2 + 𝑛𝐢3 π‘Ž π‘›βˆ’3 𝑏3 + β‹― + π‘›πΆπ‘›βˆ’1 π‘Žπ‘ π‘›βˆ’1 + 𝑏𝑛 Here, 𝑛𝐢0 , 𝑛𝐢1 , 𝑛𝐢2 , 𝑛𝐢3 , … , 𝑛𝐢𝑛 are called binomial co-efficients in the expansion of (π‘Ž + 𝑏)𝑛. Observations (i) There are (𝑛 + 1) terms in the expansion of (π‘Ž + 𝑏)𝑛, i.e., one more than the index. (ii) In the successive terms of the expansion the index of β€˜π‘Žβ€™ goes on decreasing by unity. It is 𝑛 in the first term, (𝑛– 1) in the second term, and so on ending with zero in the last term. At the same time the index of β€˜π‘β€™ increases by unity, starting with zero in the first term, 1 in the second and so on ending with 𝑛 in the last term. (iii) In the expansion of (π‘Ž + 𝑏)𝑛 , the sum of the indices of β€˜π‘Žβ€™ and β€˜π‘β€™ is 𝑛 + 0 = 𝑛 in the first term, (𝑛 – 1) + 1 = 𝑛 in the second term and so on 0 + 𝑛 = 𝑛 in the last term. Thus, it can be seen that the sum of the indices of β€˜π‘Žβ€™ and β€˜π‘β€™ is n in every term of the expansion. Some Special Cases In the expansion of (π‘Ž + 𝑏)𝑛, (i) Taking π‘Ž = π‘₯ and 𝑏 = βˆ’π‘¦ , we obtain (π‘₯ βˆ’ 𝑦)𝑛 = [π‘₯ + (βˆ’π‘¦)]𝑛 = 𝑛𝐢0 π‘₯ 𝑛 + 𝑛𝐢1 π‘₯ π‘›βˆ’1 (βˆ’π‘¦) + 𝑛𝐢2 π‘₯ π‘›βˆ’2 (βˆ’π‘¦)2 + 𝑛𝐢3 π‘₯ π‘›βˆ’3 (βˆ’π‘¦)3 + β‹― + 𝑛𝐢𝑛 (βˆ’π‘¦)𝑛 = 𝑛𝐢0 π‘₯ 𝑛 βˆ’ 𝑛𝐢1 π‘₯ π‘›βˆ’1 𝑦 + 𝑛𝐢2 π‘₯ π‘›βˆ’2 𝑦 2 βˆ’ 𝑛𝐢3 π‘₯ π‘›βˆ’3 𝑦 3 + β‹― + (βˆ’1)𝑛 𝑛𝐢𝑛 𝑦 𝑛 Thus, (π‘₯ βˆ’ 𝑦)𝑛 = 𝑛𝐢0 π‘₯ 𝑛 βˆ’ 𝑛𝐢1 π‘₯ π‘›βˆ’1 𝑦 + 𝑛𝐢2 π‘₯ π‘›βˆ’2 𝑦 2 βˆ’ 𝑛𝐢3 π‘₯ π‘›βˆ’3 𝑦 3 + β‹― + (βˆ’1)𝑛 𝑛𝐢𝑛 𝑦 𝑛 (ii) Taking π‘Ž = 1 and 𝑏 = π‘₯ , we obtain (1 + π‘₯)𝑛 = 𝑛𝐢0 1𝑛 + 𝑛𝐢1 1π‘›βˆ’1 π‘₯ + 𝑛𝐢2 1π‘›βˆ’2 π‘₯ 2 + 𝑛𝐢3 1π‘›βˆ’3 π‘₯ 3 + β‹― + +𝑛𝐢𝑛 π‘₯ 𝑛 Thus, (1 + π‘₯)𝑛 = 𝑛𝐢0 + 𝑛𝐢1 π‘₯ + 𝑛𝐢2 π‘₯ 2 + 𝑛𝐢3 π‘₯ 3 + β‹― + 𝑛𝐢𝑛 π‘₯ 𝑛 In particular, for π‘₯ = 1 ,we have 2𝑛 = 𝑛𝐢0 + 𝑛𝐢1 + 𝑛𝐢2 + 𝑛𝐢3 + β‹― + +𝑛𝐢𝑛 Thus, the sum of the binomial co-efficients in the expansion of (π‘Ž + 𝑏)𝑛 is 2𝑛. (iii) Taking π‘Ž = 1 and 𝑏 = βˆ’π‘₯ , we obtain (1 βˆ’ π‘₯)𝑛 = 𝑛𝐢0 1𝑛 + 𝑛𝐢1 1π‘›βˆ’1 (βˆ’π‘₯) + 𝑛𝐢2 1π‘›βˆ’2 (βˆ’π‘₯)2 + 𝑛𝐢3 1π‘›βˆ’3 (βˆ’π‘₯)3 + β‹― + 𝑛𝐢𝑛 (βˆ’π‘₯)𝑛 Thus, (1 βˆ’ π‘₯)𝑛 = 𝑛𝐢0 βˆ’ 𝑛𝐢1 π‘₯ + 𝑛𝐢2 π‘₯ 2 βˆ’ 𝑛𝐢3 π‘₯ 3 + β‹― + (βˆ’1)𝑛 𝑛𝐢𝑛 π‘₯ 𝑛 In particular, for π‘₯ = 1 ,we have 0 = 𝑛𝐢0 βˆ’ 𝑛𝐢1 + 𝑛𝐢2 βˆ’ 𝑛𝐢3 + β‹― + (βˆ’1)𝑛 𝑛𝐢𝑛 πŸ‘ πŸ’ Problem : Expand (π’™πŸ + ) , 𝒙 β‰  𝟎. 𝒙 Solution : By using binomial theorem, we have 3 4 3 3 2 3 3 3 4 (π‘₯ 2 + ) = 4𝐢0 (π‘₯ 2 )4 + 4𝐢1 (π‘₯ 2 )3 ( ) + 4𝐢2 (π‘₯ 2 )2 ( ) + 4𝐢3 (π‘₯ 2 ) ( ) + 4𝐢4 ( ) π‘₯ π‘₯ π‘₯ π‘₯ π‘₯ 8 6 3 4 9 2 27 81 = π‘₯ + 4. π‘₯. π‘₯ + 6. π‘₯. π‘₯ 2 + 4. π‘₯. π‘₯ 3 + π‘₯ 4 108 81 = π‘₯ 8 + 12π‘₯ 5 + 54π‘₯ 2 + π‘₯ + π‘₯4 Problem : Expand (𝒙 βˆ’ πŸπ’š)πŸ“. Solution : By using binomial theorem, we have (π‘₯ βˆ’ 2𝑦)5 = 5𝐢0 π‘₯ 5 βˆ’ 5𝐢1 π‘₯ 4 (2𝑦) + 5𝐢2 π‘₯ 3 (2𝑦)2 βˆ’ 5𝐢3 π‘₯ 2 (2𝑦)3 + 5𝐢4 π‘₯(2𝑦)4 βˆ’ 5𝐢5 (2𝑦)5 = π‘₯ 5 βˆ’ 10π‘₯ 4 𝑦 + 40π‘₯ 3 𝑦 2 βˆ’ 80π‘₯ 2 𝑦 3 + 80π‘₯𝑦 4 βˆ’ 32𝑦 5 General Term In Binomial Expansion (π‘Ž + 𝑏)𝑛 = 𝑛𝐢0 π‘Ž 𝑛 + 𝑛𝐢1 π‘Ž π‘›βˆ’1 𝑏 + 𝑛𝐢2 π‘Ž π‘›βˆ’2 𝑏 2 + 𝑛𝐢3 π‘Ž π‘›βˆ’3 𝑏 3 + β‹― + π‘›πΆπ‘›βˆ’1 π‘Žπ‘π‘›βˆ’1 + 𝑛𝐢𝑛 𝑏𝑛 We observe that, the first term= 𝑑1 = 𝑛𝐢0 π‘Ž 𝑛 = 𝑛𝐢0 π‘Ž 𝑛 𝑏0 the second term= 𝑑2 = 𝑛𝐢1 π‘Ž π‘›βˆ’1 𝑏 the third term= 𝑑3 = 𝑛𝐢2 π‘Ž π‘›βˆ’2 𝑏 2 the fourth term= 𝑑4 = 𝑛𝐢3 π‘Ž π‘›βˆ’3 𝑏3 From the above, we can generalise that the (π‘Ÿ + 1)π‘‘β„Ž term= π‘‘π‘Ÿ+1 = π‘›πΆπ‘Ÿ π‘Ž π‘›βˆ’π‘Ÿ π‘π‘Ÿ Thus, we have π‘‘π‘Ÿ+1 = π‘›πΆπ‘Ÿ π‘Žπ‘›βˆ’π‘Ÿ 𝑏 π‘Ÿ This is called the general term in the binomial expansion of (π‘Ž + 𝑏)𝑛. Problem : Find the number of terms in the expansion of (𝒂 + 𝒃)𝒏 , where 𝒏 is a positive integer. Solution Since the index of (π‘Ž + 𝑏) is 𝑛 , so the number of terms in the expansion of (π‘Ž + 𝑏)𝑛 is (𝑛 + 1). πŸ• Problem : Find the number of terms in the expansion of (𝟏 + πŸ‘π’™ + πŸ‘π’™πŸ + π’™πŸ‘ ). Solution Note that,(1 + 3π‘₯ + 3π‘₯ 2 + π‘₯ 3 )7 = [(1 + π‘₯)3 ]7 = (1 + π‘₯)21. Therefore, the number of terms in the expansion of (1 + 3π‘₯ + 3π‘₯ 2 + π‘₯ 3 )7 is (21 + 1) = 22. 𝟏 πŸ” Problem : Find the number of terms in the expansion of (π’™πŸ βˆ’ 𝟐 + π’™πŸ ). Solution 6 1 6 1 2 1 12 Note that, (π‘₯ 2 βˆ’ 2 + ) = [(π‘₯ βˆ’ ) ] = (π‘₯ βˆ’ ). π‘₯2 π‘₯ π‘₯ 1 6 Therefore, the number of terms in the expansion of (π‘₯ 2 βˆ’ 2 + π‘₯ 2) is (12 + 1) = 13. Problem : Find the number of terms in the expansion of (𝒙 + π’š)πŸ• (𝒙 βˆ’ π’š)πŸ•. Solution Note that, (π‘₯ + 𝑦)7 (π‘₯ βˆ’ 𝑦)7 = [(π‘₯ + 𝑦)(π‘₯ βˆ’ 𝑦)]7 = (π‘₯ 2 βˆ’ 𝑦 2 )7 Therefore, the number of terms in the expansion of (π‘₯ + 𝑦)7 (π‘₯ βˆ’ 𝑦)7 is (7 + 1) = 8. Problem : Find the second term in the expansion of (πŸπ’™ + πŸ‘π’š)πŸ“. Solution Second term= 𝑑2 = 𝑑1+1 = 5𝐢1 (2π‘₯)5βˆ’1 (3𝑦)1 = 5. 24. π‘₯ 4. 3𝑦 = 240π‘₯ 4 𝑦. Problem : Find the fifth term in the expansion of (𝟏 + 𝒙)πŸ“. Solution 5! 5Γ—4! Fifth term= 𝑑5 = 𝑑4+1 = 5𝐢4. 16βˆ’4. π‘₯ 4 = 4!1! π‘₯ 4 = 4!Γ—1 π‘₯ 4 = 5π‘₯ 4. 𝟏 πŸ— Problem : Find the sixth term in the expansion of (𝒙 βˆ’ 𝒙). Solution 1 5 9! 1 9Γ—8Γ—7Γ—6Γ—5! 1 126 Sixth term= 𝑑6 = 𝑑5+1 = 9𝐢5 π‘₯ 9βˆ’5 (βˆ’ ) = βˆ’. π‘₯4. =βˆ’. =βˆ’. π‘₯ 5!4! π‘₯5 5!Γ—4Γ—3Γ—2Γ—1 π‘₯ π‘₯ 𝟏 𝟏𝟎 Problem : Find the term independent of 𝒙 in the expansion of (𝟏 βˆ’ 𝒙). Solution : By using binomial theorem, we have 1 10 1 1 2 1 3 1 4 10 1 10 (1 βˆ’ ) = 10𝐢0 βˆ’ 10𝐢1. + 10𝐢2. ( ) βˆ’ 10𝐢3. ( ) + 10𝐢4. ( ) βˆ’ β‹― + (βˆ’1). 10𝐢10. ( ) π‘₯ π‘₯ π‘₯ π‘₯ π‘₯ π‘₯ st st From the above expansion, it is clear that 1 term is independent of π‘₯ and the 1 term is 10𝐢0 = 1. 𝟏 𝟏𝟎 Problem : Find the term independent of 𝒙 in the expansion of (𝒙 βˆ’ 𝒙). Solution : 1 10 Let (π‘Ÿ + 1)π‘‘β„Ž term be independent of π‘₯ in the expansion of (π‘₯ βˆ’ π‘₯). 1 π‘Ÿ Now, π‘‘π‘Ÿ+1 = 10πΆπ‘Ÿ (π‘₯)10βˆ’π‘Ÿ (βˆ’ π‘₯) 1 = (βˆ’1)π‘Ÿ 10πΆπ‘Ÿ π‘₯10βˆ’π‘Ÿ. π‘₯ π‘Ÿ = (βˆ’1)π‘Ÿ 10πΆπ‘Ÿ π‘₯10βˆ’2π‘Ÿ Since π‘‘π‘Ÿ+1 is independent of π‘₯, so index of π‘₯ is zero. ∴ 10 βˆ’ 2π‘Ÿ = 0 β‡’ 2π‘Ÿ = 10 β‡’ π‘Ÿ = 5. Hence (5 + 1)π‘‘β„Ž 𝑖. 𝑒. , 6th term is independent of π‘₯ and is given by 𝑑6 = 𝑑5+1 = (βˆ’1)5 10𝐢5 10! =βˆ’ 5! 5! 10.9.8.7.6.5! =βˆ’ 5.4.3.2.1.5! = βˆ’252 𝟏 𝟏𝟎 Problem : Find the term independent of 𝒙 in the expansion of (𝒙 + 𝒙). Solution : 1 10 Let (π‘Ÿ + 1)π‘‘β„Ž term be independent of π‘₯ in the expansion of (π‘₯ + π‘₯). 1 π‘Ÿ Now, π‘‘π‘Ÿ+1 = 10πΆπ‘Ÿ (π‘₯)10βˆ’π‘Ÿ (π‘₯) 1 = 10πΆπ‘Ÿ π‘₯10βˆ’π‘Ÿ. π‘₯ π‘Ÿ = 10πΆπ‘Ÿ π‘₯10βˆ’2π‘Ÿ Since π‘‘π‘Ÿ+1 is independent of π‘₯, so index of π‘₯ is zero. ∴ 10 βˆ’ 2π‘Ÿ = 0 β‡’ 2π‘Ÿ = 10 β‡’ π‘Ÿ = 5. Hence (5 + 1)π‘‘β„Ž , 𝑖. 𝑒. , 6th term is independent of π‘₯ and is given by 𝑑6 = 𝑑5+1 = 10𝐢5 10! = 5! 5! 10.9.8.7.6.5! = 5.4.3.2.1.5! = 252 𝟏 𝟏𝟐 Problem : Find the term independent of 𝒙 in the expansion of (πŸ—π’™πŸ βˆ’ πŸ‘π’™). Solution : 1 12 Let (π‘Ÿ + 1)π‘‘β„Ž term be independent of π‘₯ in the expansion of (9π‘₯ 2 βˆ’ 3π‘₯). 1 π‘Ÿ Now, π‘‘π‘Ÿ+1 = 12πΆπ‘Ÿ (9π‘₯ 2 )12βˆ’π‘Ÿ (βˆ’ 3π‘₯) 1 = (βˆ’1)π‘Ÿ 12πΆπ‘Ÿ 912βˆ’π‘Ÿ. π‘₯ 24βˆ’2π‘Ÿ. 3π‘Ÿ π‘₯ π‘Ÿ 1 = (βˆ’1)π‘Ÿ 12πΆπ‘Ÿ 912βˆ’π‘Ÿ. π‘₯ 24βˆ’3π‘Ÿ. π‘Ÿ 3 Since π‘‘π‘Ÿ+1 is independent of π‘₯, so index of π‘₯ is zero. ∴ 24 βˆ’ 3π‘Ÿ = 0 β‡’ 3π‘Ÿ = 24 β‡’ π‘Ÿ = 8. Hence (8 + 1)π‘‘β„Ž , 𝑖. 𝑒. , 9th term is independent of π‘₯ and is given by 1 𝑑9 = 𝑑8+1 = (βˆ’1)8 12𝐢8 912βˆ’8. 38 12! 912βˆ’8 = Γ— 8 8! 4! 3 12 Γ— 11 Γ— 10 Γ— 9 Γ— 8! 94 = Γ— 8 8! Γ— 4 Γ— 3 Γ— 2 Γ— 1 3 38 = 11 Γ— 5 Γ— 9 Γ— 8 3 = 495 𝟏𝟎 βˆšπ’Ž Problem : If the 𝒙 independent term in the expansion of (βˆšπ’™ βˆ’ π’™πŸ ) 𝐒𝐬 πŸ’πŸ“πŸŽ , then find the value of π’Ž. Solution : 10 βˆšπ‘š Let (π‘Ÿ + 1)π‘‘β„Ž term be independent of π‘₯ in the expansion of (√π‘₯ βˆ’ π‘₯ 2 ). 10βˆ’π‘Ÿ π‘Ÿ βˆšπ‘š Now, π‘‘π‘Ÿ+1 = 10πΆπ‘Ÿ (√π‘₯) (βˆ’ π‘₯2 ) 10βˆ’π‘Ÿ π‘Ÿ (βˆšπ‘š) = (βˆ’1)π‘Ÿ 10πΆπ‘Ÿ. π‘₯ 2. π‘₯ 2π‘Ÿ π‘Ÿ 10βˆ’π‘Ÿ βˆ’2π‘Ÿ = (βˆ’1)π‘Ÿ 10πΆπ‘Ÿ. π‘š2. π‘₯ 2 π‘Ÿ 10βˆ’5π‘Ÿ = (βˆ’1)π‘Ÿ 10πΆπ‘Ÿ. π‘š2. π‘₯ 2 Since π‘‘π‘Ÿ+1 is independent of π‘₯,so index of π‘₯ is zero. 10βˆ’5π‘Ÿ ∴ 2 = 0 β‡’ 10 βˆ’ 5π‘Ÿ = 0 β‡’ 5π‘Ÿ = 10 β‡’ π‘Ÿ = 2. Hence (2 + 1)rd , 𝑖. 𝑒. , 3rd term is independent of π‘₯ and is given by π‘Ÿ 𝑑3 = 𝑑2+1 = (βˆ’1)π‘Ÿ 10πΆπ‘Ÿ. π‘š2 2 = (βˆ’1)2 10𝐢2. π‘š2 10! = 2!8! π‘š 10.9.8! = 2.8! π‘š = 45π‘š By given condition, 45π‘š = 450 β‡’ π‘š = 10 Problem : Find the co-efficient of π’™πŸ in the expansion of (𝟏 + 𝒑𝒙)𝟏𝟎. Solution By using binomial theorem, we have (1 + 𝑝π‘₯)10 = 10𝐢0 + 10𝐢1 (𝑝π‘₯) + 10𝐢2 (𝑝π‘₯)2 + 10𝐢3 (𝑝π‘₯)3 + β‹― + 10𝐢10 (𝑝π‘₯)10 = 1 + 10𝐢1 (𝑝π‘₯) + 10𝐢2 𝑝 2 π‘₯ 2 + 10𝐢3 𝑝 3 π‘₯ 3 + β‹― + 𝑝10 π‘₯10 So, the co-efficient of π‘₯ 2 in the expansion of (1 + 𝑝π‘₯)10 is 10𝐢2 𝑝 2 10! = 2!8! 𝑝 2 10.9.8! 2 = 𝑝 2.8! = 45𝑝 2. 𝟏 𝟏 𝟏𝟎 Problem : Find the co-efficient of π’™πŸ in the expansion of (𝟏 βˆ’ 𝒙). Solution : By using binomial theorem, we have 1 10 1 1 2 1 3 1 10 (1 βˆ’ ) = 10𝐢0 βˆ’ 10𝐢1 ( ) + 10𝐢2 ( ) βˆ’ 10𝐢3 ( ) + β‹― + 10𝐢10 ( ) π‘₯ π‘₯ π‘₯ π‘₯ π‘₯ 1 1 10 10! 10.9.8! So, the co-efficient of π‘₯ 2 in the expansion of (1 βˆ’ π‘₯) is 10𝐢2 = 2!8! = 2.8! = 45. 𝟏 𝟏𝟎 Problem : Find the co-efficient of π’™βˆ’πŸ‘ in the expansion of (𝟏 βˆ’ 𝒙 ). Solution : By using binomial theorem, we have 1 10 1 1 2 1 3 1 10 (1 βˆ’ ) = 10𝐢0 βˆ’ 10𝐢1 ( ) + 10𝐢2 ( ) βˆ’ 10𝐢3 ( ) + β‹― + 10𝐢10 ( ) π‘₯ π‘₯ π‘₯ π‘₯ π‘₯ 1 10 10! 10.9.8.7! So, the co-efficient of π‘₯ βˆ’3 in the expansion of (1 βˆ’ π‘₯) is βˆ’10𝐢3 = βˆ’ 3!7! = βˆ’ 6.7! = βˆ’120. 𝟏𝟎 Problem : Find the co-efficient of π’™πŸ‘ in the expansion of (𝟏 + πŸ‘π’™ + πŸ‘π’™πŸ + π’™πŸ‘ ). Solution : Note that, (1 + 3π‘₯ + 3π‘₯ 2 + π‘₯ 3 )10 = [(1 + π‘₯)3 ]10 = (1 + π‘₯)30 = 30𝐢0 + 30𝐢1 π‘₯ + 30𝐢2 π‘₯ 2 + 30𝐢3 π‘₯ 3 + 30𝐢4 π‘₯ 4 + β‹― + 30𝐢30 π‘₯ 30 So, the co-efficient of π‘₯ 3 in the expansion of (1 + 3π‘₯ + 3π‘₯ 2 + π‘₯ 3 )10 is 30𝐢3. 𝟏 𝟏 𝟏𝟎 Problem : Find the co-efficient of π’™πŸ” in the expansion of (𝟏 βˆ’ π’™πŸ ). Solution : By using binomial theorem, we have 1 10 1 1 2 1 3 1 10 (1 βˆ’ 2 ) = 10𝐢0 βˆ’ 10𝐢1 ( 2 ) + 10𝐢2 ( 2 ) βˆ’ 10𝐢3 ( 2 ) + β‹― + 10𝐢10 ( 2 ) π‘₯ π‘₯ π‘₯ π‘₯ π‘₯ 1 1 10 10! 10.9.8.7! So, the co-efficient of π‘₯6 in the expansion of (1 βˆ’ π‘₯ 2 ) is βˆ’10𝐢3 = βˆ’ 3!7! = βˆ’ 6.7! = βˆ’120. 𝟏 𝟏𝟎 Problem : Find the co-efficient of sixth term in the expansion of (𝒂 βˆ’ πŸπ’‚). Solution : 1 5 Sixth term= 𝑑6 = 𝑑5+1 = 10𝐢5 π‘Ž10βˆ’5 (βˆ’ 2π‘Ž) 1 = βˆ’10𝐢5. π‘Ž 5. 25π‘Ž 5 1 = βˆ’10𝐢5. 25 1 10 Thus, the co-efficient of sixth term in the expansion of (π‘Ž βˆ’ 2π‘Ž) is 1 βˆ’10𝐢5. 25 10! = βˆ’ 5!5! 10.9.8.7.6.5! 1 =βˆ’ 5!5! Γ— 32 10.9.8.7.6 1 = βˆ’ 120 Γ— 32 63 = βˆ’8 πŸ• πŸ– Problem : Find the co-efficient of π’™βˆ’πŸ in the expansion of (πŸ‘π’™ βˆ’ 𝒙). Solution : 7 8 Let (π‘Ÿ + 1)π‘‘β„Ž term contain π‘₯ βˆ’2 in the expansion of (3π‘₯ βˆ’ π‘₯). 7 π‘Ÿ Now, π‘‘π‘Ÿ+1 = 8πΆπ‘Ÿ (3π‘₯)8βˆ’π‘Ÿ (βˆ’ π‘₯) 7π‘Ÿ = (βˆ’1)π‘Ÿ 8πΆπ‘Ÿ 38βˆ’π‘Ÿ. π‘₯ 8βˆ’π‘Ÿ. π‘₯ π‘Ÿ = (βˆ’1)π‘Ÿ 8πΆπ‘Ÿ 38βˆ’π‘Ÿ. 7π‘Ÿ. π‘₯ 8βˆ’2π‘Ÿ Since π‘‘π‘Ÿ+1 contains π‘₯ βˆ’2 , so index of π‘₯ is βˆ’2. ∴ 8 βˆ’ 2π‘Ÿ = βˆ’2 β‡’ 2π‘Ÿ = 10 β‡’ π‘Ÿ = 5. Hence (5 + 1)π‘‘β„Ž 𝑖. 𝑒. 6th term contains π‘₯ βˆ’2. Therefore, the co-efficient of π‘₯ βˆ’2 = (βˆ’1)π‘Ÿ 8πΆπ‘Ÿ 38βˆ’π‘Ÿ. 7π‘Ÿ = (βˆ’1)5 8𝐢5 38βˆ’5. 75 = βˆ’8𝐢5. 33. 75 = βˆ’25412184 πŸ“ π’‚πŸ Problem : Find the co-efficient of 𝒙 in the expansion of (π’™πŸ + 𝒙 ). Solution : 5 π‘Ž2 Let (π‘Ÿ + 1)π‘‘β„Ž term contain π‘₯ in the expansion of (π‘₯ 2 + π‘₯ ). π‘Ÿ π‘Ž2 Now, π‘‘π‘Ÿ+1 = 5πΆπ‘Ÿ (π‘₯ 2 )5βˆ’π‘Ÿ ( π‘₯ ) π‘Ž 2π‘Ÿ = 5πΆπ‘Ÿ. π‘₯10βˆ’2π‘Ÿ. π‘₯π‘Ÿ 2π‘Ÿ 10βˆ’3π‘Ÿ = 5πΆπ‘Ÿ π‘Ž π‘₯ Since π‘‘π‘Ÿ+1 contains π‘₯, so index of π‘₯ is 1. ∴ 10 βˆ’ 3π‘Ÿ = 1 β‡’ 3π‘Ÿ = 9 β‡’ π‘Ÿ = 3. Hence (3 + 1)π‘‘β„Ž 𝑖. 𝑒. 4th term contains π‘₯. Therefore, the co-efficient of π‘₯ = 5πΆπ‘Ÿ π‘Ž 2π‘Ÿ = 5𝐢3 π‘Ž 6 5! 6 = π‘Ž 3! 2! 5.4.3! 6 = π‘Ž 3! Γ— 2 = 10π‘Ž 6 𝟏 𝟏𝟎 Problem : Find the co-efficient of π’™πŸπŸŽ in the expansion of (π’™πŸ βˆ’ π’™πŸ‘ ). Solution : 1 10 Let (π‘Ÿ + 1)π‘‘β„Ž term contain π‘₯10 in the expansion of (π‘₯ 2 βˆ’ π‘₯ 3). 1 π‘Ÿ Now, π‘‘π‘Ÿ+1 = 10πΆπ‘Ÿ (π‘₯ 2 )10βˆ’π‘Ÿ (βˆ’ π‘₯ 3) 1 = (βˆ’1)π‘Ÿ 10πΆπ‘Ÿ. π‘₯ 20βˆ’2π‘Ÿ. π‘₯ 3π‘Ÿ = (βˆ’1)π‘Ÿ 10πΆπ‘Ÿ π‘₯ 20βˆ’5π‘Ÿ Since π‘‘π‘Ÿ+1 contains π‘₯10 , so index of π‘₯ is 10. ∴ 20 βˆ’ 5π‘Ÿ = 10 β‡’ 5π‘Ÿ = 10 β‡’ π‘Ÿ = 2. Hence (2 + 1)π‘Ÿπ‘‘ , 𝑖. 𝑒. , 3rd term contains π‘₯10. Therefore, the co-efficient of π‘₯10 = (βˆ’1)π‘Ÿ 10πΆπ‘Ÿ = (βˆ’1)2 10𝐢2 10! = 2!8! 10.9.8! = 2.8! = 45 𝟏 𝟏𝟎 Problem : Find the co-efficient of 𝒙 in the expansion of (𝟏 βˆ’ πŸπ’™πŸ‘ + πŸ‘π’™πŸ“ ) (𝟏 + 𝒙 ). Solution : 1 10 (1 βˆ’ 2π‘₯ 3 + 3π‘₯ 5 ) (1 + ) π‘₯ 1 1 1 1 1 1 = (1 βˆ’ 2π‘₯ 3 + 3π‘₯ 5 ) (1 + 10𝐢1. + 10𝐢2. 2 + 10𝐢3. 3 + 10𝐢4. 4 + 10𝐢5. 5 + β‹― + 10 ) π‘₯ π‘₯ π‘₯ π‘₯ π‘₯ π‘₯ From the above multiplication, it is clear that the co-efficient of π‘₯ in the expansion of 1 10 (1 βˆ’ 2π‘₯ 3 + 3π‘₯ 5 ) (1 + ) is π‘₯ βˆ’2 Γ— 10𝐢2 + 3 Γ— 10𝐢4 10! 10! = βˆ’2 Γ— +3Γ— 2! 8! 4! 6! 10 Γ— 9 Γ— 8! 10 Γ— 9 Γ— 8 Γ— 7 Γ— 6! = βˆ’2 Γ— +3Γ— 2 Γ— 8! 4 Γ— 3 Γ— 2 Γ— 1 Γ— 6! = βˆ’90 + 630 = 540 𝟏 𝒏 Problem : If the 4th term in the expansion of (𝒑𝒙 + 𝒙) is independent of 𝒙, find the value of 𝒏. πŸ“ Calculate 𝒑 if the 4th term be 𝟐. Solution : 1 3 Here, 𝑑4 = 𝑑3+1 = 𝑛𝐢3 (𝑝π‘₯)π‘›βˆ’3 (π‘₯) 1 = 𝑛𝐢3. 𝑝 π‘›βˆ’3. π‘₯ π‘›βˆ’3. π‘₯ 3 = 𝑛𝐢3. 𝑝 π‘›βˆ’3. π‘₯ π‘›βˆ’6 Since 𝑑4 is independent of π‘₯, so index of π‘₯ is zero. ∴ 𝑛 βˆ’ 6 = 0 β‡’ 𝑛 = 6. 5 If the 4th term be 2, then 5 𝑑4 = 2 5 β‡’ 𝑛𝐢3. 𝑝 π‘›βˆ’3. π‘₯ π‘›βˆ’6 = 2 5 β‡’ 6𝐢3. 𝑝 6βˆ’3. π‘₯ 6βˆ’6 = 2 6! 5 β‡’ 𝑝3 = 3! (6 βˆ’ 3)! 2 6 Γ— 5 Γ— 4 Γ— 3! 3 5 β‡’ 𝑝 = 6 Γ— 3! 2 6 Γ— 5 Γ— 4 Γ— 3! 3 5 β‡’ 𝑝 = 6 Γ— 3! 2 1 β‡’ 𝑝3 = 8 1 ⇒𝑝= 2 𝟏 𝒏 Problem : If the fifth term in the expansion of (π’™πŸ βˆ’ 𝒙) is independent of 𝒙, find the value of 𝒏. Solution : 1 4 Here, 𝑑5 = 𝑑4+1 = 𝑛𝐢4 (π‘₯ 2 )π‘›βˆ’4 (βˆ’ ) π‘₯ 1 = 𝑛𝐢4. π‘₯ 2π‘›βˆ’8. π‘₯ 4 = 𝑛𝐢4 π‘₯ 2π‘›βˆ’12 Since 𝑑5 is independent of π‘₯, so index of π‘₯ is zero. ∴ 2𝑛 βˆ’ 12 = 0 β‡’ 2𝑛 = 12 β‡’ 𝑛 = 6. 𝟏 𝟏𝟎 Problem : If the third and fourth terms in the expansion of (πŸπ’™ + πŸ–) are equal , then find the value of 𝒙. Solution : 1 2 1 Here , 𝑑3 = 𝑑2+1 = 10𝐢2 (2π‘₯)10βˆ’2 ( ) = 10𝐢2 (2π‘₯) 8. 8 82 1 3 1 and 𝑑4 = 𝑑3+1 = 10𝐢3 (2π‘₯)10βˆ’3 (8) = 10𝐢3 (2π‘₯) 7. 83 By the given condition, 𝑑3 = 𝑑4 1 1 β‡’ 10𝐢2 (2π‘₯)8. = 10𝐢3 (2π‘₯)7. 82 83 10! 10! 1 β‡’. 2π‘₯ =. 2!8! 3!7! 8 10! 10! 1 β‡’. 2π‘₯ =. 2! Γ— 8 Γ— 7! 3 Γ— 2! Γ— 7! 8 1 β‡’ 2π‘₯ = 3 1 β‡’π‘₯= 6 Problem : If in the expansion of (𝟏 + 𝒙)𝟐𝟎 the co-efficients of 𝒓𝒕𝒉 term and (𝒓 + 𝟏)𝒕𝒉 term is in the ratio 𝟏 ∢ 𝟐 , then find the value of 𝒓. Solution : In the expansion of (1 + π‘₯)20 π‘‘π‘Ÿ = 𝑑(π‘Ÿβˆ’1)+1 = 20πΆπ‘Ÿβˆ’1 π‘₯ π‘Ÿβˆ’1 π‘‘π‘Ÿ+1 = 20πΆπ‘Ÿ π‘₯ π‘Ÿ By the given condition, π‘‘π‘Ÿ 1 π‘‘π‘Ÿ+1 =2 20πΆπ‘Ÿβˆ’1 1 β‡’ = 20πΆπ‘Ÿ 2 20πΆπ‘Ÿ β‡’ 20 =2 πΆπ‘Ÿβˆ’1 20βˆ’π‘Ÿ+1 π‘›πΆπ‘Ÿ π‘›βˆ’π‘Ÿ+1 β‡’ =2 [∡ = ] π‘Ÿ π‘›πΆπ‘Ÿβˆ’1 π‘Ÿ β‡’ 20 βˆ’ π‘Ÿ + 1 = 2π‘Ÿ β‡’ 21 = 3π‘Ÿ β‡’π‘Ÿ=7 𝟏 𝟏𝟏 Problem : If the co-efficient of π’™πŸ• in the expansion of (π’‘π’™πŸ + 𝒒𝒙) be equal to the co-efficient of 𝟏 𝟏𝟏 π’™βˆ’πŸ• in the expansion of (𝒑𝒙 βˆ’ ) , then prove that 𝒑𝒒 = 𝟏. π’’π’™πŸ Solution : 1 11 Let (π‘Ÿ + 1)π‘‘β„Ž term contain π‘₯ 7 in the expansion of (𝑝π‘₯ 2 + π‘žπ‘₯). 1 π‘Ÿ 1 1 Now, π‘‘π‘Ÿ+1 = 11πΆπ‘Ÿ (𝑝π‘₯ 2 )11βˆ’π‘Ÿ (π‘žπ‘₯) = 11πΆπ‘Ÿ. 𝑝11βˆ’π‘Ÿ. π‘₯ 22βˆ’2π‘Ÿ. π‘žπ‘Ÿπ‘₯ π‘Ÿ = 11πΆπ‘Ÿ. 𝑝11βˆ’π‘Ÿ. π‘žπ‘Ÿ. π‘₯ 22βˆ’3π‘Ÿ ∴ 22 βˆ’ 3π‘Ÿ = 7 β‡’ 3π‘Ÿ = 15 β‡’ π‘Ÿ = 5 1 ∴ 𝑑6 = 11𝐢5. 𝑝 6. 5. π‘₯ 7 π‘ž 1 11 Again, let (π‘˜ + 1)π‘‘β„Ž term contain π‘₯ βˆ’7 in the expansion of (𝑝π‘₯ βˆ’ π‘žπ‘₯ 2). 1 π‘˜ Now, π‘‘π‘˜+1 = 11πΆπ‘˜ (𝑝π‘₯)11βˆ’π‘˜ (βˆ’ π‘žπ‘₯ 2 ) 1 = (βˆ’1)π‘˜ 11πΆπ‘˜. 𝑝11βˆ’π‘˜. π‘₯11βˆ’π‘˜. π‘žπ‘˜ π‘₯ 2π‘˜ 1 11βˆ’3π‘˜ = (βˆ’1)π‘˜ 11πΆπ‘˜. 𝑝11βˆ’π‘˜..π‘₯ π‘žπ‘˜ ∴ 11 βˆ’ 3π‘˜ = βˆ’7 β‡’ 3π‘˜ = 18 β‡’ π‘˜ = 6 1 1 1 ∴ 𝑑7 = (βˆ’1)6 11𝐢6. 𝑝 5. π‘ž6. π‘₯ βˆ’7 = 11𝐢6. 𝑝 5. π‘ž6. π‘₯ βˆ’7 = 11𝐢5. 𝑝 5. π‘ž6. π‘₯ βˆ’7 [∡ π‘›πΆπ‘Ÿ = π‘›πΆπ‘›βˆ’π‘Ÿ ] By given condition, 1 1 11𝐢5. 𝑝 6. π‘ž5 = 11𝐢5. 𝑝 5. π‘ž6 1 ⇒𝑝= π‘ž β‡’ π‘π‘ž = 1 Middle terms in the expansion of (𝒂 + 𝒃)𝒏 Regarding the middle term in the expansion of (π‘Ž + 𝑏)𝑛 , we have (i) If 𝑛 is even, then the number of terms in the expansion will be 𝑛 + 1. Since 𝑛 is even, so 𝑛 + 1 𝑛+1+1 π‘‘β„Ž 𝑛 π‘‘β„Ž is odd. Therefore, the middle term is ( 2 ) ,i.e., ( 2 + 1) term. 8 π‘‘β„Ž For example, in the expansion of (π‘₯ + 2𝑦)8 , the middle term is ( + 1) ,i.e., 5th term. 2 (ii) If 𝑛 is odd, then 𝑛 + 1 is even. So, there will be two middle terms in the expansion, namely, 𝑛+1 π‘‘β„Ž 𝑛+1 π‘‘β„Ž ( ) term and ( + 1) term. 2 2 7+1 π‘‘β„Ž For example, in the expansion of (2π‘₯ βˆ’ 𝑦)7 , the middle terms are ( ) ,i.e., 4th term and 2 7+1 π‘‘β„Ž ( + 1) term, i.e., 5th term. 2 𝟏.πŸ‘.πŸ“β€¦(πŸπ’βˆ’πŸ) Problem : Prove that the middle term in the expansion of (𝟏 + 𝒙)πŸπ’ is 𝒏!. πŸπ’. 𝒙𝒏 , where 𝒏 is a positive integer. Solution : 2𝑛 π‘‘β„Ž Since 2𝑛 is even, so the middle term in the expansion of (1 + π‘₯)2𝑛 is ( 2 + 1) , i.e., (𝑛 + 1)π‘‘β„Ž term which is given by 𝑑𝑛+1 = 2𝑛𝐢𝑛 (1)2π‘›βˆ’π‘› π‘₯ 𝑛 (2𝑛)! 𝑛 = 𝑛!𝑛! π‘₯ 1.2.3.4….(2π‘›βˆ’2)(2π‘›βˆ’1)2𝑛 𝑛 = 𝑛!𝑛! π‘₯ [1.3.5…(2π‘›βˆ’1)][2.4.6….(2π‘›βˆ’2)2𝑛] 𝑛 = 𝑛!𝑛! π‘₯ 𝑛 [1.3.5…(2π‘›βˆ’1)]2 [1.2.3…(π‘›βˆ’1)𝑛] 𝑛 = 𝑛!𝑛! π‘₯ [1.3.5…(2π‘›βˆ’1)]𝑛! 𝑛 𝑛 = 𝑛!𝑛! 2 π‘₯ 1.3.5…(2π‘›βˆ’1) 𝑛 𝑛 = 𝑛! 2 π‘₯ 𝟏 πŸ– Problem : Find the middle term in the expansion of (πŸπ’™πŸ βˆ’ ). 𝒙 Solution : 1 8 Here 𝑛 = 8 which is even. So, there is only one middle term in the expansion of (2π‘₯ 2 βˆ’ π‘₯) and it is 8 π‘‘β„Ž (2 + 1) , i.e., 5π‘‘β„Ž term which is given by 1 4 𝑑5 = 𝑑4+1 = 8𝐢4 (2π‘₯ 2 )8βˆ’4 (βˆ’ π‘₯) 8! 1 = 4!4! 24 π‘₯ 8. π‘₯ 4 8.7.6.5.4! = 24.4!. 16π‘₯ 4 = 1120π‘₯ 4 𝟏 πŸ– Problem : Find the middle term in the expansion of (𝒂𝒙 βˆ’ 𝒂𝒙). Solution : 1 8 Here 𝑛 = 8 which is even. So, there is only one middle term in the expansion of (π‘Žπ‘₯ βˆ’ ) and it is π‘Žπ‘₯ 8 π‘‘β„Ž ( + 1) , i.e., 5π‘‘β„Ž term which is given by 2 1 4 𝑑5 = 𝑑4+1 = 8𝐢4 (π‘Žπ‘₯)8βˆ’4 (βˆ’ π‘Žπ‘₯) 8! 1 = 4!4! π‘Ž 4 π‘₯ 4. π‘Ž4 π‘₯ 4 8.7.6.5.4! = 24.4! = 70 𝟏 πŸ” Problem : Find the middle term in the expansion of (𝒂𝒙 + 𝒂𝒙). Solution : 1 6 Here 𝑛 = 6 which is even. So, there is only one middle term in the expansion of (π‘Žπ‘₯ + π‘Žπ‘₯) and it is 6 π‘‘β„Ž (2 + 1) , i.e., 4π‘‘β„Ž term which is given by 1 3 𝑑4 = 𝑑3+1 = 6𝐢3 (π‘Žπ‘₯)6βˆ’3 ( ) π‘Žπ‘₯ 6! 3 3 1 = π‘Ž π‘₯. 3 3 3!3! π‘Ž π‘₯ 6.5.4.3! = 6.3! = 20 𝟏 πŸ– Problem : Find the middle term in the expansion of (πŸ‘π’™ βˆ’ πŸπ’™). Solution : 1 8 Here 𝑛 = 8 which is even. So, there is only one middle term in the expansion of (3π‘₯ βˆ’ 2π‘₯) and it is 8 π‘‘β„Ž (2 + 1) , i.e., 5π‘‘β„Ž term which is given by 1 4 𝑑5 = 𝑑4+1 = 8𝐢4 (3π‘₯)8βˆ’4 (βˆ’ ) 2π‘₯ 8! 4 4 1 = 4!4! 3 π‘₯. 24π‘₯ 4 8.7.6.5.4! 81 = Γ— 24.4! 16 35Γ—81 = 8 2835 = 8 𝟏 πŸ– Problem : Find the middle term in the expansion of (π’™πŸ + ). π’™πŸ Solution : 1 8 Here 𝑛 = 8 which is even. So, there is only one middle term in the expansion of (π‘₯ 2 + π‘₯ 2) and it is 8 π‘‘β„Ž (2 + 1) , i.e., 5π‘‘β„Ž term which is given by 1 4 𝑑5 = 𝑑4+1 = 8𝐢4 (π‘₯ 2 )8βˆ’4 (π‘₯ 2) 8! 8 1 = π‘₯. 8 4!4! π‘₯ 8.7.6.5.4! = 24.4! = 70 Infinite Series If βˆ’1 < π‘₯ < 1 , 𝑖. 𝑒. , |π‘₯| < 1,then (i) (1 βˆ’ π‘₯)βˆ’1 = 1 + π‘₯ + π‘₯2 + π‘₯3 + π‘₯4 + π‘₯5 + β‹― (ii) (1 + π‘₯)βˆ’1 = 1 βˆ’ π‘₯ + π‘₯2 βˆ’ π‘₯3 + π‘₯4 βˆ’ π‘₯5 + β‹― (iii) (1 βˆ’ π‘₯)βˆ’2 = 1 + 2π‘₯ + 3π‘₯ 2 + 4π‘₯ 3 + 5π‘₯ 4 + 6π‘₯ 5 + β‹― (iv) (1 + π‘₯)βˆ’2 = 1 βˆ’ 2π‘₯ + 3π‘₯ 2 βˆ’ 4π‘₯ 3 + 5π‘₯ 4 βˆ’ 6π‘₯ 5 + β‹― 𝟏 Problem : Find the values of 𝒙 for which (𝟏 βˆ’ πŸπ’™)βˆ’πŸ can be extended in a binomial series. Solution : 1 1 1 (1 βˆ’ 2π‘₯)βˆ’2 can be extended in a binomial series if βˆ’1 < 2π‘₯ < 1 , i. e., if βˆ’ < π‘₯ <. 2 2 Problem : If |𝒙| < 𝟏, then prove that (𝟏 + 𝒙 + π’™πŸ + π’™πŸ‘ + β‹― )(𝟏 βˆ’ 𝒙 + π’™πŸ βˆ’ π’™πŸ‘ + β‹― ) = 𝟏 + π’™πŸ + π’™πŸ’ + π’™πŸ” + β‹―. Solution : We have, (1 + π‘₯ + π‘₯ 2 + π‘₯ 3 + β‹― )(1 βˆ’ π‘₯ + π‘₯ 2 βˆ’ π‘₯ 3 + β‹― ) = (1 βˆ’ π‘₯)βˆ’1 (1 + π‘₯)βˆ’1 [∡ |π‘₯| < 1 ] = [(1 βˆ’ π‘₯)(1 + π‘₯)]βˆ’1 = (1 βˆ’ π‘₯ 2 )βˆ’1 = 1 + π‘₯ 2 + (π‘₯ 2 )2 + (π‘₯ 2 )3 + β‹― [∡ |π‘₯| < 1 β‡’ |π‘₯ 2 | < 1] = 1 + π‘₯2 + π‘₯4 + π‘₯6 + β‹― Problem If 𝒙 = 𝟏 + 𝒂 + π’‚πŸ + + β‹― (|𝒂| < 𝟏) 𝐚𝐧𝐝 π’š = 𝟏 + 𝒃 + π’ƒπŸ + β‹― (|𝒃| < 𝟏), then prove that π’™π’š 𝟏 + 𝒂𝒃 + π’‚πŸ π’ƒπŸ + β‹― =. 𝒙+π’šβˆ’πŸ Solution : Given, π‘₯ = 1 + π‘Ž + π‘Ž 2 + + β‹― (|π‘Ž| < 1) and 𝑦 = 1 + 𝑏 + 𝑏2 + β‹― (|𝑏| < 1) β‡’ π‘₯ = (1 βˆ’ π‘Ž)βˆ’1 β‡’ 𝑦 = (1 βˆ’ 𝑏)βˆ’1 1 1 β‡’ π‘₯ = 1βˆ’π‘Ž β‡’ 𝑦 = 1βˆ’π‘ π‘₯𝑦 Now, π‘₯+π‘¦βˆ’1 1 1. 1βˆ’π‘Ž 1βˆ’π‘ = 1 1 + 1βˆ’π‘Ž 1βˆ’π‘ βˆ’1 1 (1βˆ’π‘Ž)(1βˆ’π‘) = 1βˆ’π‘+1βˆ’π‘Žβˆ’(1βˆ’π‘Ž)(1βˆ’π‘) (1βˆ’π‘Ž)(1βˆ’π‘) 1 = 2βˆ’π‘Žβˆ’π‘βˆ’1+𝑏+π‘Žβˆ’π‘Žπ‘ 1 = 1βˆ’π‘Žπ‘ = (1 βˆ’ π‘Žπ‘)βˆ’1 = 1 + (π‘Žπ‘) + (π‘Žπ‘)2 + β‹― [∡ |π‘Ž| < 1 &|𝑏| < 1 β‡’ |π‘Žπ‘| < 1] = 1 + π‘Žπ‘ + π‘Ž 2 𝑏2 + β‹― Exponential Series If π‘₯ is a real number, then π‘₯ π‘₯2 π‘₯3 π‘₯4 𝑒π‘₯ = 1 + + + + +β‹― 1! 2! 3! 4! Logarithmic Series (i) If βˆ’1 < π‘₯ ≀ 1, then π‘₯2 π‘₯3 π‘₯4 log𝑒 (1 + π‘₯) = π‘₯ βˆ’ + βˆ’ + β‹― 2 3 4 (ii) If βˆ’1 ≀ π‘₯ < 1, then π‘₯2 π‘₯3 π‘₯4 log𝑒 (1 βˆ’ π‘₯) = βˆ’π‘₯ βˆ’ βˆ’ βˆ’ βˆ’ β‹― 2 3 4

Use Quizgecko on...
Browser
Browser