Engineering Mathematics III Past Paper PDF
Document Details
Uploaded by Deleted User
Tags
Related
- Nonlinear Dynamics and Chaos 2018 PDF
- CE 2121 Module 1 Explain - Surveying Definitions and Types PDF
- Applied Mathematics I Question Bank 2024-25 (Annasaheb Dange College of Engineering and Technology) PDF
- Hadar Gasner Full-Stack Developer CV PDF
- Index of Applications LA Larson PDF
- Advanced Engineering Mathematics PDF
Summary
This document is likely a syllabus or lecture notes for a course in engineering mathematics, specifically the third semester.
Full Transcript
Y X...
Y X E 7 5 37 76 75 Paper / Subject Code: 50821 / Engineering Mathematics-III 23 37 X2 7Y E3 5X 6E 37 76 75 23 Y7 37 X2 7Y E3 5X 6E 37 6 5 23 7 37 X2 7 7 Y (3 Hours) Total Marks : 80 7Y E3 5X 6E 7 75 3 6 3 Y7 37 X2 E3 7 2 Y X E Note: (1) Question No. 1 is Compulsory. 37 76 5 37 6 75 7 6 Y7 X2 (2) Answer any three questions from Q.2 to Q.6 7Y E3 7 2 3 7Y 5X 6E 37 (3) Figures to the right indicate full marks. 6 75 23 7 23 7 37 2 Y E3 5X Y X 5X 37 6E 37 76 75 37 2 Y7 7 X2 7Y E3 Find 𝐿[𝑡𝑒 3𝑡 𝑠𝑖𝑛𝑡] X 6E Q1. a) 5 3 6E 5 37 76 75 Find a , b , c, d if 𝑓(𝑧) = 𝑥 2 + 2𝑎𝑥𝑦 + 𝑏𝑦 2 + 𝑖(𝑐𝑥 2 + 2𝑑𝑥𝑦 + 𝑦 2 ) is 23 Y7 7 b) 5 5 3 Y7 37 2 Y 3 5X E 5X analytic. 37 6E 7 6 6E 37 23 Y7 37 Find the Fourier expansion of 𝑓(𝑥) = 𝑥 2 , −𝜋 ≤ 𝑥 ≤ 𝜋 X2 c) 5 Y7 37 Y7 X2 X 6E 37 1 0 0 E 75 d) 5 7 5 37 6 75 3 Y7 37 2 Find the eigen values of 𝐴 − 5𝐴 + 4𝐼 if A 2 3 0 E3 Y7 X2 5X 2 X2 3 6E 37 76 E 37 5 37 76 75 1 4 2 7 7 X2 7Y 3 X2 Y 3 E X2 Y 3 E 37 6 6E 5 23 37 76 75 7 7 75 2 7Y 3 5X 7 X2 Y E3 X E Q2. a) 3 i) If L f (t ) s 7Y E3 , find L e 2t f (2t ) 7 76 75 23 7 6 75 3 76 s s4 E3 2 23 7 2 Y E3 5X 7Y E3 X 7Y 3 5X 37 76 2 ii) Find 𝐿(𝑡 𝑠𝑖𝑛𝑎𝑡) 76 5 7 76 23 37 2 7Y E3 23 37 7Y X 7Y X E 𝑥(𝜋 2 −𝑥 2 ) 5X b) 6 76 6E 5 23 Determine the Half Range Sine Series for 𝑓(𝑥) = 12 , 6 5 3 37 23 Y7 37 X2 7Y 5X Y7 37 E where 0 < 𝑥 < 𝜋. 5X E 7 76 6E 5 23 7 37 6 3 37 Find analytic function f(z) whose imaginary part is 𝑒 𝑥 𝑐𝑜𝑠𝑦 + 𝑥 3 − 3𝑥𝑦 2 E3 c) Y7 37 8 X2 7Y 5X Y7 X2 6E 76 6E 37 5 23 7 37 75 Y7 7 7Y E3 Y7 X2 3 5X X2 E3 𝜕2 𝑢 6E Q3. a) 𝜕𝑢 6 37 76 Solve 𝜕𝑥 2 − 32 𝜕𝑡 = 0 by Bender-Schmidt method subjected to the 23 37 75 37 76 75 7 2 7Y 5X X2 7Y E3 X conditions 𝑢(0, 𝑡) = 0 , 𝑢(𝑥, 0) = 0, 𝑢(1, 𝑡) = 𝑡, taking h =0.25, 6E 7Y E3 5 23 7 6 75 23 Y7 0 < 𝑥 < 1, upto 𝑡 = 5. 37 76 E3 23 7 5X 7Y E3 X 6E 7Y b) Determine the Harmonic Conjugate of u if u + iv is analytic 5X 37 6 6 75 Y7 7 6 23 Y7 3𝑥 2 𝑦 − 𝑦 3 = 𝑢 X2 E3 23 Y7 37 E3 5X 5X 37 6 E 75 c) 2 8 x 7 6 over 0, 2 . Hence show Y7 6 23 Y7 37 Determine the Fourier Series f ( x) X2 E3 Y7 37 5X 37 2 6E 37 6 6E 75 37 Y7 2 Y7 37 X2 E3 2 5X Y7 X2 1 1 1 that 2 2 2 ... 37 6E 37 76 75 37 37 75 X2 1 2 3 6 7 X2 7Y E3 X2 Y E3 75 37 6 5 23 6 75 Y7 7 3 7 2 E3 5X Q4. a) Evaluate the following Integral using Laplace Transforms. 6 6E 7Y E3 X 37 ∞ 𝑡 6 5 Y7 37 76 23 Y7 7 X2 𝐼 = ∫ 𝑒 −𝑡 (∫ 𝑢. 𝑐𝑜𝑠 2 𝑢 𝑑𝑢) 𝑑𝑡 E3 E 7Y 5X 37 37 76 75 0 0 76 X2 23 𝑠 37 X2 Y b) 3 Determine inverse Laplace Transform of , using Convolution 6 7Y 6E (𝑠2 +1)(𝑠2 +4) 5X 37 E 75 6 3 Y7 theorem. X2 Y7 37 X2 3 6E c) 3 1 4 8 37 6E 75 37 5 𝐼𝑠 𝑡ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝐴 = [0 2 6] diagonalizable? If so find the diagonal Y7 7 X2 E3 Y7 X2 3 6E 0 0 5 37 6 75 37 5 Y7 Y7 37 form of A and transforming matrix of A. X2 E3 X2 6E 37 76 75 75 7 X2 7Y E3 7Y E3 76 75 3 76 23 X2 7Y E3 7Y 5X 75 57280 Page 1 of 2 76 23 23 37 E3 7Y 5X 5X 6E 23 37 Y7 37 5X 6E X237Y76E375X237Y76E375X237Y76E375X237Y76E375 6E 37 E3 X2 37 Y7 75 Y7 6 37 5X 6 E3 X2 E3 Y7 2 37 7 5X 3 75 6E 6E 37 7Y 76 X2 3 75 Y7 6 23 7Y 37 E3 5X E3 Y 76 X2 37 7 76 23 75 E 5X E3 7Y X2 37 Y7 6 23 7 5X 5X 76 37 5X E3 7Y 23 E3 Y7 23 75 76 7Y 23 75 6E E3 57280 7Y c) Q6. a) c) Q5. a) X2 b) b) 7Y X2 375 76 37 75X 76 E3 76 37 E3 Y7 X2 E3 75 Y7 6E 23 7 5X 37 75 6E 37 X2 7Y 23 X2 3 Y7 37 76 7Y Y7 37 75 6 37 5X E3 6E 37 Y7 X2 E3 75 76 E3 Y7 6E 23 7 5X 𝜕2 𝑢 5X 6E 37 23 7Y Y7 3 X2 75 37 76 23 7 5 6 37 5 X E 7Y X2 2 7 𝜕𝑢 6E 7Y E3 Y7 37 6 37 37 7 X2 3 7 5 6 37 5 X E Y7 5X 6E 37 7Y X2 E3 75 Y7 2 37 37 5X 6E 23 76 37 X 6E Y 7Y 5 E3 Y7 23 37 76 2 37 37 5X 76 X2 37 7 5 6E 7Y 5 E 3 Y7 23 X 2 37 7 X2 3 7 5 6 E3 75 Y7 6 37 5X 6E 7Y X2 E 3 7Y E Y 3 7 76 37 7 5 76 X2 37 37 5X 76E 23 7Y 5 E3 Y7 X 2 E3 X2 37 75 Y7 23 37 7 6 3 7 75 X 6E Y X2 6E 7Y 5X E3 Y7 2 37 7 6 37 𝑥 7 6 37 Find the Laplace Transform of 𝑓(𝑡) = 37 23 75 E 5X E3 5X 6 7 Y 7 23 7 Y7 E3 Y7 X2 37 5 6E 2 2 2 1 2 0 23 6 37 5 X 6E 7Y 𝑖 = 0,1,2,3,4 𝑎𝑛𝑑 𝑗 = 0,1,2 taking ℎ = 1. 75 X2 37 Page 2 of 2 [2 1 −6] 2 3 5 Find the Eigen value and the eigen vector of 7Y E3 Y7 37 76 7 X2 75 6 3 7 5X E3 Y E t 76 37 Y 7 Determine the Inverse Laplace Transform of i) E3 X2 37 76 23