Bari Secondary School Trigonometry & Complex Number Assignment PDF

Summary

This document is a trigonometry and complex numbers assignment from Bari Secondary School. It contains multiple choice and structured questions relating to the topics of trigonometry and complex numbers.

Full Transcript

Assignment for Trigonometry and complex number PART ONE; MCQ, CIRCLE THE CORRECT ANSWER. 1. Express 150° into radian measure a) 4𝜋 5𝜋 b) 6 𝜋 c) 6 2𝜋 d) 5 2. Evaluate (4i)2 + 8 a) -8 b) 16 c) 8 d) -4 3. The angle 240° lies...

Assignment for Trigonometry and complex number PART ONE; MCQ, CIRCLE THE CORRECT ANSWER. 1. Express 150° into radian measure a) 4𝜋 5𝜋 b) 6 𝜋 c) 6 2𝜋 d) 5 2. Evaluate (4i)2 + 8 a) -8 b) 16 c) 8 d) -4 3. The angle 240° lies in a) First quadrant b) Third quadrant c) Fourth quadrant d) Second quadrant 4. The reference angle of 135° is a) 30° b) 60° c) 50° d) 45° 5. (3 + 2i) – (1 + 2i) is equal to a) 2 b) 2 – i c) 2 + 4i d) 3 – 4i 6. The hypotenuse of the triangle below is a). 15m c). 10m 8m b). 25m d).16m 7. Evaluate i16 6m a) -1 b) 1 c) 4 d) I 8. The value of negative angle sin (-30°) is 𝟏 𝟏 a) c) − 𝟐 𝟐 1 b) 4 d) 1 Page 1 of 6 9. 𝒄𝒐𝒔𝟐 𝜽 + 𝒔𝒊𝒏𝟐 𝜽 is equal to 𝟏 a) 1 c) 𝟐 b) 2 d) -1 10. Conjugate of (2 – 5i) is a) 2 – 5i b) 5i c) 5 + 2i d) 2 + 5i PART TWO: STRUCTURE QUESTIONS Q1. Find the value of six trigonometric functions of the acute angle triangle below a. Sin𝜃___________________________________ b. cos𝜃___________________________________ c. tan𝜃___________________________________ 4m d. cot𝜃___________________________________ e. csc𝜃___________________________________ f. sec𝜃___________________________________ 3m Question 2 A). Convert into Radians a). 90° b). 360° ………………………………………………………………………………………………… ………………………………………………………………………….. B). Convert into Degrees 𝜋 4𝜋 5𝜋 𝜋 a). 3 b). c). d). 4 3 6 ………………………………………………………………………………………………… ……………………………………………………………………………. QUESTION 3 A). Find the Reference angle 𝜃𝑟 for 𝜃 if a). 𝜃 = 60° : ……………………………………………………………… b). 𝜃 = 225° : ………………………………………………………………. c). 𝜃 = 315° : ………………………………………………………………. d). 𝜃 = 120° : ……………………………………………………………… Page 2 of 6 QUESTION 4 Prove the following identities a) tanθcot 2 θ=cotθ -------------------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------- 2 2 b) cosθ + cosθ = 4secθ ------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------ c) cotθcscθsecθ=csc 2 θ ------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------ secθ d) =tanθ cscθ ---------------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------------- -------------------------------------------------- e) tan2θ + 1 = sec2θ -------------------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------------- -------------------------------------------- f) cotx(cosx + tanx.sinx) = cscx -------------------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------------- --------------------------------------------- Page 3 of 6 QUESTION 5 a) Sketch the graphs of the following functions. I. Y = Sinx for 0 ≤ x ≤ 360° II. Y = Cosx for 0 ≤ x ≤ 360° III. y = tanx for 0 ≤ x ≤ 360° IV. y = cotx for 0 ≤ x ≤ 360° V. y = secx for 0 ≤ x ≤ 360° VI. y = cscx for 0 ≤ x ≤ 360° 1 180° 360° 90° 𝟏𝟖𝟎° 270° 360° -1 1 1 90° 180° 270° 360° 90° 180° 270° 360° -1 -1 90° 180° 270° 360° 90° 180° 270° 360° Page 4 of 6 b) Find the exact value of the following A. Sin(-270°) B. Cos(45°) C. Sec180° D. Csc180° E. Cot60° F. Sec30° QUESTION 5 a) Add or Subtract the following complex numbers: A. (6 + 4i) + (-2 + i) 1 5𝑖 2 4𝑖 B. (3 + ) + (3 + ) 3 3 C. (2 + 3i) + (1 + i) – (3 + 2i) D. (8 + 4i) – (2 – 3i) b) If x = 2 + 2i, y = 4i, z = 4 + i. Find the: A. 2x -3y B. 4y +2z C. x + y - z c) Multiply or divide A. 4(3 – 2i) 1 B. (9 + 6𝑖) 3 C. (1 + 2𝑖)(1 − 4𝑖) D. (3i)(2 + 3i) Page 5 of 6 3−2𝑖 E. 1+𝑖 2+5𝑖 F. 3−2𝑖 d) Simplify the following A. I18 B. i28 C. √−196 D. √−72 e) If Z = 6 + 2i, Find: A. The conjugate of Z* B. Z + Z* C. Z Z* D. │Z│ Teacher: AhmedNur Ali Page 6 of 6

Use Quizgecko on...
Browser
Browser