BAHI-08 Block-2 Rise Of Modern Science PDF
Document Details
Uploaded by StrikingRisingAction
Odisha State Open University, Sambalpur
Tags
Summary
This document is a course material for a Bachelor of Arts (Honours) in History course, focusing on the Rise of the Modern West - II, specifically on the development of science from the Renaissance to the 17th century and its impact on European society. It details scientific methodology, new ideas in astronomy, biology, and chemistry, and new mechanical devices, such as telescopes and calculating devices. This document is not a past paper.
Full Transcript
This course material is designed and developed by Indira Gandhi National Open University (IGNOU), New Delhi, Krishna Kanta Handiqui State Open University (KKHSOU), Guwahati and Vidya Mitra(MHRD). BACHELOR OF ARTS (HONOURS) IN HISTORY (BAHI) BHI-08...
This course material is designed and developed by Indira Gandhi National Open University (IGNOU), New Delhi, Krishna Kanta Handiqui State Open University (KKHSOU), Guwahati and Vidya Mitra(MHRD). BACHELOR OF ARTS (HONOURS) IN HISTORY (BAHI) BHI-08 Rise of The Modern West-II BLOCK – 2 RISE OF MODERN SCIENCE UNIT-5 DEVELOPMENT OF SCIENCE FROM RENAISSANCE TO THE 17TH CENTURY UNIT-6 IMPACT OF MODERN SCIENCE ON EUROPEAN SOCIETY UNIT 5 : DEVELOPMENT OF SCIENCE FROM RENAISSANCE TO THE 17TH CENTURY Structure 5.0 Objectives 5.1 Introduction 5.2 Scientific method 5.2.1 Empiricism 5.2.2 Baconian Science 5.2.3 Scientific Experimentation 5.2.4 Mathematisation 5.2.5 The Mechanical Philosophy 5.2.6 Institutionalization 5.3 New ideas 5.3.1 Astronomy 5.3.2 Biology and Medicine 5.3.3 Chemistry 5.3.4 Physical 5.4 New mechanical devices 5.4.1 Calculating Devices 5.4.2 Industrial Machines 5.4.3 Telescopes 5.4.4 Other Devices 5.4.5 Materials, Construction, and Aesthetics 5.5 Let Us Sum Up 5.6 Key Words 5.7 Answers to Check Your Progress Exercises 5.0 OBJECTIVES After reading this unit you will be able to know; changes that occurred during the Scientific Revolution and resulted in developments towards a new means for experimentation, 1 different key figures of the scientific revolution and their achievements in various fields, work of both Copernicus and Kepler and their revolutionary ideas, and discoveries and progress made by leading medical professionals during the Early Modern era. 5.1 INTRODUCTION The Scientific Revolution was a series of events that marked the emergence of modern science during the early modern period, when developments in mathematics, physics, astronomy, biology (including human anatomy) and chemistry transformed the views of society about nature. The Scientific Revolution took place in Europe towards the end of the Renaissance period and continued through the late 18th century, influencing the intellectual social movement known as the Enlightenment. While its dates are debated, the publication in 1543 of Nicolaus Copernicus' De revolutionibus orbium coelestium (On the Revolutions of the Heavenly Spheres) is often cited as marking the beginning of the Scientific Revolution. Much of the change of attitude came from Francis Bacon whose "confident and emphatic announcement" in the modern progress of science inspired the creation of scientific societies such as the Royal Society, and Galileo who championed Copernicus and developed the science of motion. The beginning of the Scientific Revolution, the 'Scientific Renaissance', was focused on the recovery of the knowledge of the ancients; this is generally considered to have ended in 1632 with publication of Galileo's Dialogue Concerning the Two Chief World Systems. The completion of the Scientific Revolution is attributed to the "grand synthesis" of Isaac Newton's 1687 Principia. The work formulated the laws of motion and universal gravitation, thereby completing the synthesis of a new cosmology. By the end of the 18th century, the Age of Enlightenment that followed the Scientific Revolution had given way to the "Age of Reflection". In the 20th century, Alexandre Koyré introduced the term "scientific revolution", centring his analysis on Galileo. The term was popularized by Butterfield in his Origins of Modern Science. Thomas Kuhn's 1962 work The Structure of Scientific Revolutions emphasized that different theoretical frameworks such as Einstein's theory of relativity and Newton's theory of gravity, which it replaced cannot be directly compared without meaning loss. 5.2 SCIENTIFIC METHOD Under the scientific method as conceived in the 17th century, natural and artificial circumstances were set aside as a research tradition of systematic experimentation was slowly accepted by the scientific community. The philosophy of using an inductive approach to obtain knowledge to abandon assumption and to attempt to observe with an open mind was in contrast with the earlier, Aristotelian approach of deduction, by which analysis of known facts produced further understanding. In 2 practice, many scientists and philosophers believed that a healthy mix of both was needed the willingness to question assumptions, yet also to interpret observations assumed to have some degree of validity. By the end of the Scientific Revolution the qualitative world of book-reading philosophers had been changed into a mechanical, mathematical world to be known through experimental research. Though it is certainly not true that Newtonian science was like modern science in all respects, it conceptually resembled ours in many ways. Many of the hallmarks of modern science, especially with regard to its institutionalization and professionalization, did not become standard until the mid- 19th century. 5.2.1 Empiricism The Aristotelian scientific tradition's primary mode of interacting with the world was through observation and searching for "natural" circumstances through reasoning. Coupled with this approach was the belief that rare events which seemed to contradict theoretical models were aberrations, telling nothing about nature as it "naturally" was. During the Scientific Revolution, changing perceptions about the role of the scientist in respect to nature, the value of evidence, experimental or observed, led towards a scientific methodology in which empiricism played a large, but not absolute, role. By the start of the Scientific Revolution, empiricism had already become an important component of science and natural philosophy. Prior thinkers, including the early-14th-century nominalist philosopher William of Ockham, had begun the intellectual movement toward empiricism. The term British empiricism came into use to describe philosophical differences perceived between two of its founders Francis Bacon, described as empiricist, and René Descartes, who was described as a rationalist. Thomas Hobbes, George Berkeley, and David Hume were the philosophy's primary exponents, who developed a sophisticated empirical tradition as the basis of human knowledge. An influential formulation of empiricism was John Locke's An Essay Concerning Human Understanding (1689), in which he maintained that the only true knowledge that could be accessible to the human mind was that which was based on experience. He wrote that the human mind was created as a tabula rasa, a "blank tablet," upon which sensory impressions were recorded and built up knowledge through a process of reflection. 5.2.2 Baconian Science The philosophical underpinnings of the Scientific Revolution were laid out by Francis Bacon, who has been called the father of empiricism. His works established and popularised inductive methodologies for scientific inquiry, often called the Baconian method, or simply the scientific method. His demand for a planned procedure of investigating all things natural marked a new turn in the rhetorical and 3 theoretical framework for science, much of which still surrounds conceptions of proper methodology today. Bacon proposed a great reformation of all process of knowledge for the advancement of learning divine and human, which he called Instauratio Magna (The Great Instauration). For Bacon, this reformation would lead to a great advancement in science and a progeny of new inventions that would relieve mankind's miseries and needs. His Novum Organum was published in 1620. He argued that man is "the minister and interpreter of nature", that "knowledge and human power are synonymous", that "effects are produced by the means of instruments and helps", and that "man while operating can only apply or withdraw natural bodies; nature internally performs the rest", and later that "nature can only be commanded by obeying her". Here is an abstract of the philosophy of this work that by the knowledge of nature and the using of instruments, man can govern or direct the natural work of nature to produce definite results. Therefore, that man, by seeking knowledge of nature, can reach power over it—and thus re-establish the "Empire of Man over creation", which had been lost by the fall together with man's original purity. In this way, he believed, would mankind be raised above conditions of helplessness, poverty and misery, while coming into a condition of peace, prosperity and security. For this purpose of obtaining knowledge of and power over nature, Bacon outlined in this work a new system of logic he believed to be superior to the old ways of syllogism, developing his scientific method, consisting of procedures for isolating the formal cause of a phenomenon (heat, for example) through eliminative induction. For him, the philosopher should proceed through inductive reasoning from fact to axiom to physical law. Before beginning this induction, though, the enquirer must free his or her mind from certain false notions or tendencies which distort the truth. In particular, he found that philosophy was too preoccupied with words, particularly discourse and debate, rather than actually observing the material world: "For while men believe their reason governs words, in fact, words turn back and reflect their power upon the understanding, and so render philosophy and science sophistical and inactive". Bacon considered that it is of greatest importance to science not to keep doing intellectual discussions or seeking merely contemplative aims, but that it should work for the bettering of mankind's life by bringing forth new inventions, having even stated that "inventions are also, as it were, new creations and imitations of divine works". He explored the far-reaching and world-changing character of inventions, such as the printing press, gunpowder and the compass. Despite his influence on scientific methodology, he himself rejected correct novel theories such as William Gilbert's magnetism, Copernicus's heliocentrism, and Kepler's laws of planetary motion. 4 5.2.3 Scientific Experimentation William Gilbert was an early advocate of this method. He passionately rejected both the prevailing Aristotelian philosophy and the Scholastic method of university teaching. His book De Magnete was written in 1600, and he is regarded by some as the father of electricity and magnetism. In this work, he describes many of his experiments with his model Earth called the terrella. From these experiments, he concluded that the Earth was itself magnetic and that this was the reason compasses point north. De Magnete was influential not only because of the inherent interest of its subject matter, but also for the rigorous way in which Gilbert described his experiments and his rejection of ancient theories of magnetism. According to Thomas Thomson, "Gilbert ('s)... book on magnetism published in 1600, is one of the finest examples of inductive philosophy that has ever been presented to the world. It is the more remarkable, because it preceded the Novum Organum of Bacon, in which the inductive method of philosophizing was first explained". Galileo Galilei has been called the "father of modern observational astronomy", the "father of modern physics", the "father of science", and "the Father of Modern Science". His original contributions to the science of motion were made through an innovative combination of experiment and mathematics. Galileo was one of the first modern thinkers to clearly state that the laws of nature are mathematical. In The Assayer he wrote "Philosophy is written in this grand book, the universe... It is written in the language of mathematics, and its characters are triangles, circles, and other geometric figures;...." His mathematical analyses are a further development of a tradition employed by late scholastic natural philosophers, which Galileo learned when he studied philosophy. He ignored Aristotelianism. In broader terms, his work marked another step towards the eventual separation of science from both philosophy and religion; a major development in human thought. He was often willing to change his views in accordance with observation. In order to perform his experiments, Galileo had to set up standards of length and time, so that measurements made on different days and in different laboratories could be compared in a reproducible fashion. This provided a reliable foundation on which to confirm mathematical laws using inductive reasoning. Galileo showed an appreciation for the relationship between mathematics, theoretical physics, and experimental physics. He understood the parabola, both in terms of conic sections and in terms of the ordinate (y) varying as the square of the abscissa (x). Galilei further asserted that the parabola was the theoretically ideal trajectory of a uniformly accelerated projectile in the absence of friction and other disturbances. He conceded that there are limits to the validity of this theory, noting on theoretical grounds that a projectile trajectory of a size comparable to that of the Earth could not possibly be a parabola, but he nevertheless maintained that for distances up to the range of the artillery of his day, the deviation of a projectile's trajectory from a parabola would be only very slight. 5 5.2.4 Mathematisation Scientific knowledge, according to the Aristotelians, was concerned with establishing true and necessary causes of things. To the extent that medieval natural philosophers used mathematical problems, they limited social studies to theoretical analyses of local speed and other aspects of life. The actual measurement of a physical quantity, and the comparison of that measurement to a value computed on the basis of theory, was largely limited to the mathematical disciplines of astronomy and optics in Europe. In the 16th and 17th centuries, European scientists began increasingly applying quantitative measurements to the measurement of physical phenomena on the Earth. Galileo maintained strongly that mathematics provided a kind of necessary certainty that could be compared to God's: "...with regard to those few (mathematical propositions) which the human intellect does understand, I believe its knowledge equals the Divine in objective certainty..." Galileo anticipates the concept of a systematic mathematical interpretation of the world in his book II Saggiatore: Philosophy (i.e., physics) is written in this grand book—I mean the universe—which stands continually open to our gaze, but it cannot be understood unless one first learns to comprehend the language and interpret the characters in which it is written. It is written in the language of mathematics, and its characters are triangles, circles, and other geometrical figures, without which it is humanly impossible to understand a single word of it; without these, one is wandering around in a dark labyrinth. 5.2.5 The Mechanical Philosophy Aristotle recognized four kinds of causes, and where applicable, the most important of them is the "final cause". The final cause was the aim, goal, or purpose of some natural process or man-made thing. Until the Scientific Revolution, it was very natural to see such aims, such as a child's growth, for example, leading to a mature adult. Intelligence was assumed only in the purpose of man-made artifacts; it was not attributed to other animals or to nature. In "mechanical philosophy" no field or action at a distance is permitted, particles or corpuscles of matter are fundamentally inert. Motion is caused by direct physical collision. Where natural substances had previously been understood organically, the mechanical philosophers viewed them as machines. As a result, Isaac Newton's theory seemed like some kind of throwback to "spooky action at a distance". According to Thomas Kuhn, Newton and Descartes held the teleological principle that God conserved the amount of motion in the universe: Gravity, interpreted as an innate attraction between every pair of particles of matter, was an occult quality in the same sense as the scholastics' "tendency to fall" had been.... By the mid eighteenth century 6 that interpretation had been almost universally accepted, and the result was a genuine reversion (which is not the same as a retrogression) to a scholastic standard. Innate attractions and repulsions joined size, shape, position and motion as physically irreducible primary properties of matter. Newton had also specifically attributed the inherent power of inertia to matter, against the mechanist thesis that matter has no inherent powers. But whereas Newton vehemently denied gravity was an inherent power of matter, his collaborator Roger Cotes made gravity also an inherent power of matter, as set out in his famous preface to the Principia's 1713 second edition which he edited, and contradicted Newton himself. And it was Cotes's interpretation of gravity rather than Newton's that came to be accepted. 5.2.6 Institutionalization The first moves towards the institutionalization of scientific investigation and dissemination took the form of the establishment of societies, where new discoveries were aired, discussed and published. The first scientific society to be established was the Royal Society of London. This grew out of an earlier group, centred around Gresham College in the 1640s and 1650s. According to a history of the College: The scientific network which centred on Gresham College played a crucial part in the meetings which led to the formation of the Royal Society. These physicians and natural philosophers were influenced by the "new science", as promoted by Francis Bacon in his New Atlantis, from approximately 1645 onwards. A group known as The Philosophical Society of Oxford was run under a set of rules still retained by the Bodleian Library. On 28 November 1660, the 1660 committee of 12 announced the formation of a "College for the Promoting of Physico- Mathematical Experimental Learning", which would meet weekly to discuss science and run experiments. At the second meeting, Robert Moray announced that the King approved of the gatherings, and a Royal charter was signed on 15 July 1662 creating the "Royal Society of London", with Lord Brouncker serving as the first President. A second Royal Charter was signed on 23 April 1663, with the King noted as the Founder and with the name of "the Royal Society of London for the Improvement of Natural Knowledge"; Robert Hooke was appointed as Curator of Experiments in November. This initial royal favour has continued, and since then every monarch has been the patron of the Society. The Society's first Secretary was Henry Oldenburg. Its early meetings included experiments performed first by Robert Hooke and then by Denis Papin, who was appointed in 1684. These experiments varied in their subject area, and were both important in some cases and trivial in others. The society began publication of Philosophical Transactions from 1665, the oldest and longest- running scientific journal in the world, which established the important principles of scientific priority and peer review. The French established the Academy of Sciences in 1666. In contrast to the private origins of its British counterpart, the Academy was 7 founded as a government body by Jean-Baptiste Colbert. Its rules were set down in 1699 by King Louis-XIV, when it received the name of 'Royal Academy of Sciences' and was installed in the Louvre in Paris. 5.3 NEW IDEAS As the Scientific Revolution was not marked by any single change, the following new ideas contributed to what is called the Scientific Revolution. Many of them were revolutions in their own fields. 5.3.1 Astronomy Heliocentrism For almost five millennia, the geocentric model of the Earth as the center of the universe had been accepted by all but a few astronomers. In Aristotle's cosmology, Earth's central location was perhaps less significant than its identification as a realm of imperfection, inconstancy, irregularity and change, as opposed to the "heavens" (Moon, Sun, planets, stars), which were regarded as perfect, permanent, unchangeable, and in religious thought, the realm of heavenly beings. The Earth was even composed of different material, the four elements "earth", "water", "fire", and "air", while sufficiently far above its surface (roughly the Moon's orbit), the heavens were composed of different substance called "aether". The heliocentric model that replaced it involved not only the radical displacement of the earth to an orbit around the sun, but its sharing a placement with the other planets implied a universe of heavenly components made from the same changeable substances as the Earth. Heavenly motions no longer needed to be governed by a theoretical perfection, confined to circular orbits. Copernicus' 1543 work on the heliocentric model of the solar system tried to demonstrate that the sun was the center of the universe. Few were bothered by this suggestion, and the pope and several archbishops were interested enough by it to want more detail. His model was later used to create the calendar of Pope Gregory- XIII. However, the idea that the earth moved around the sun was doubted by most of Copernicus' contemporaries. It contradicted not only empirical observation, due to the absence of an observable stellar parallax, but more significantly at the time, the authority of Aristotle. The discoveries of Johannes Kepler and Galileo gave the theory credibility. Kepler was an astronomer who, using the accurate observations of Tycho Brahe, proposed that the planets move around the sun not in circular orbits, but in elliptical ones. Together with his other laws of planetary motion, this allowed him to create a model of the solar system that was an improvement over Copernicus' original system. Galileo's main contributions to the acceptance of the heliocentric system were his mechanics, the observations he made with his telescope, as well as his detailed presentation of the case for the system. Using an early theory of inertia, Galileo could explain why rocks dropped from a tower fall straight down even if the earth 8 rotates. His observations of the moons of Jupiter, the phases of Venus, the spots on the sun, and mountains on the moon all helped to discredit the Aristotelian philosophy and the Ptolemaic theory of the solar system. Through their combined discoveries, the heliocentric system gained support, and at the end of the 17th century it was generally accepted by astronomers. This work culminated in the work of Isaac Newton. Newton's Principia formulated the laws of motion and universal gravitation, which dominated scientists' view of the physical universe for the next three centuries. By deriving Kepler's laws of planetary motion from his mathematical description of gravity, and then using the same principles to account for the trajectories of comets, the tides, the precession of the equinoxes, and other phenomena, Newton removed the last doubts about the validity of the heliocentric model of the cosmos. This work also demonstrated that the motion of objects on Earth and of celestial bodies could be described by the same principles. His prediction that the Earth should be shaped as an oblate spheroid was later vindicated by other scientists. His laws of motion were to be the solid foundation of mechanics; his law of universal gravitation combined terrestrial and celestial mechanics into one great system that seemed to be able to describe the whole world in mathematical formulae. Gravitation As well as proving the heliocentric model, Newton also developed the theory of gravitation. In 1679, Newton began to consider gravitation and its effect on the orbits of planets with reference to Kepler's laws of planetary motion. This followed stimulation by a brief exchange of letters in 1679–80 with Robert Hooke, who had been appointed to manage the Royal Society's correspondence, and who opened a correspondence intended to elicit contributions from Newton to Royal Society transactions. Newton's reawakening interest in astronomical matters received further stimulus by the appearance of a comet in the winter of 1680–1681, on which he corresponded with John Flamsteed. After the exchanges with Hooke, Newton worked out proof that the elliptical form of planetary orbits would result from a centripetal force inversely proportional to the square of the radius vector (see Newton's law of universal gravitation – History and De motu corporum in gyrum). Newton communicated his results to Edmond Halley and to the Royal Society in De motu corporum in gyrum, in 1684. This tract contained the nucleus that Newton developed and expanded to form the Principia. The Principia was published on 5 July 1687 with encouragement and financial help from Edmond Halley. In this work, Newton stated the three universal laws of motion that contributed to many advances during the Industrial Revolution which soon followed and were not to be improved upon for more than 200 years. Many of these advancements continue to be the underpinnings of non-relativistic technologies in the modern world. He used the Latin word gravitas (weight) for the effect that would become known as gravity, and defined the law of universal gravitation. Newton's postulate of an invisible force able to act over vast distances led to him being criticised for introducing "occult 9 agencies" into science. Later, in the second edition of the Principia (1713), Newton firmly rejected such criticisms in a concluding General Scholium, writing that it was enough that the phenomena implied a gravitational attraction, as they did; but they did not so far indicate its cause, and it was both unnecessary and improper to frame hypotheses of things that were not implied by the phenomena. (Here Newton used what became his famous expression "hypotheses non fingo". 5.3.2 Biology and Medicine The writings of Greek physician Galen had dominated European medical thinking for over a millennium. The Flemish scholar Vesalius demonstrated mistakes in the Galen's ideas. Vesalius dissected human corpses, whereas Galen dissected animal corpses. Published in 1543, Vesalius' De humani corporis fabrica was a ground breaking work of human anatomy. It emphasized the priority of dissection and what has come to be called the "anatomical" view of the body, seeing human internal functioning as an essentially corporeal structure filled with organs arranged in three- dimensional space. This was in stark contrast to many of the anatomical models used previously, which had strong Galenic/Aristotelean elements, as well as elements of astrology. Besides the first good description of the sphenoid bone, he showed that the sternum consists of three portions and the sacrum of five or six; and described accurately the vestibule in the interior of the temporal bone. He not only verified the observation of Etienne on the valves of the hepatic veins, but he described the vena azygos, and discovered the canal which passes in the fetus between the umbilical vein and the vena cava, since named ductus venosus. He described the omentum, and its connections with the stomach, the spleen and the colon; gave the first correct views of the structure of the pylorus; observed the small size of the caecal appendix in man; gave the first good account of the mediastinum and pleura and the fullest description of the anatomy of the brain yet advanced. He did not understand the inferior recesses; and his account of the nerves is confused by regarding the optic as the first pair, the third as the fifth and the fifth as the seventh. Before Vesalius, the anatomical notes by Alessandro Achillini demonstrate a detailed description of the human body and compares what he has found during his dissections to what others like Galen and Avicenna have found and notes their similarities and differences. Niccolò Massa was an Italian anatomist who wrote an early anatomy text Anatomiae Libri Introductorius in 1536, described the cerebrospinal fluid and was the author of several medical works. Jean Fernel was a French physician who introduced the term "physiology" to describe the study of the body's function and was the first person to describe the spinal canal. Further groundbreaking work was carried out by William Harvey, who published De Motu Cordis in 1628. Harvey made a detailed analysis of the overall structure of the heart, going on to an analysis of the arteries, showing how their pulsation depends upon the contraction of the left ventricle, while the contraction of the right ventricle propels its charge of blood into the pulmonary artery. He noticed that the two 10 ventricles move together almost simultaneously and not independently like had been thought previously by his predecessors. In the eighth chapter, Harvey estimated the capacity of the heart, how much blood is expelled through each pump of the heart, and the number of times the heart beats in half an hour. From these estimations, he demonstrated that according to Gaelen's theory that blood was continually produced in the liver, the absurdly large figure of 540 pounds of blood would have to be produced every day. Having this simple mathematical proportion at hand—which would imply a seemingly impossible role for the liver—Harvey went on to demonstrate how the blood circulated in a circle by means of countless experiments initially done on serpents and fish: tying their veins and arteries in separate periods of time, Harvey noticed the modifications which occurred; indeed, as he tied the veins, the heart would become empty, while as he did the same to the arteries, the organ would swell up. This process was later performed on the human body (in the image on the left): the physician tied a tight ligature onto the upper arm of a person. This would cut off blood flow from the arteries and the veins. When this was done, the arm below the ligature was cool and pale, while above the ligature it was warm and swollen. The ligature was loosened slightly, which allowed blood from the arteries to come into the arm, since arteries are deeper in the flesh than the veins. When this was done, the opposite effect was seen in the lower arm. It was now warm and swollen. The veins were also more visible, since now they were full of blood. Various other advances in medical understanding and practice were made. French physician Pierre Fauchard started dentistry science as we know it today, and he has been named "the father of modern dentistry". Surgeon Ambroise Paré (c. 1510– 1590) was a leader in surgical techniques and battlefield medicine, especially the treatment of wounds, and Herman Boerhaave (1668–1738) is sometimes referred to as a "father of physiology" due to his exemplary teaching in Leiden and his textbook Institutiones medicae (1708). 5.3.3 Chemistry Chemistry, and its antecedent alchemy, became an increasingly important aspect of scientific thought in the course of the 16th and 17th centuries. The importance of chemistry is indicated by the range of important scholars who actively engaged in chemical research. Among them were the astronomer Tycho Brahe, the chemical physician Paracelsus, Robert Boyle, Thomas Browne and Isaac Newton. Unlike the mechanical philosophy, the chemical philosophy stressed the active powers of matter, which alchemists frequently expressed in terms of vital or active principles— of spirits operating in nature. Practical attempts to improve the refining of ores and their extraction to smelt metals were an important source of information for early chemists in the 16th century, among them Georg Agricola (1494–1555), who published his great work De re metallica in 1556. His work describes the highly developed and complex processes 11 of mining metal ores, metal extraction and metallurgy of the time. His approach removed the mysticism associated with the subject, creating the practical base upon which others could build. English chemist Robert Boyle (1627–1691) is considered to have refined the modern scientific method for alchemy and to have separated chemistry further from alchemy. Although his research clearly has its roots in the alchemical tradition, Boyle is largely regarded today as the first modern chemist, and therefore one of the founders of modern chemistry, and one of the pioneers of modern experimental scientific method. Although Boyle was not the original discover, he is best known for Boyle's law, which he presented in 1662, the law describes the inversely proportional relationship between the absolute pressure and volume of a gas, if the temperature is kept constant within a closed system. Boyle is also credited for his landmark publication The Sceptical Chymist in 1661, which is seen as a cornerstone book in the field of chemistry. In the work, Boyle presents his hypothesis that every phenomenon was the result of collisions of particles in motion. Boyle appealed to chemists to experiment and asserted that experiments denied the limiting of chemical elements to only the classic four: earth, fire, air, and water. He also pleaded that chemistry should cease to be subservient to medicine or to alchemy, and rise to the status of a science. Importantly, he advocated a rigorous approach to scientific experiment: he believed all theories must be tested experimentally before being regarded as true. The work contains some of the earliest modern ideas of atoms, molecules, and chemical reaction, and marks the beginning of the history of modern chemistry. 5.3.4 Physical Optics Important work was done in the field of optics. Johannes Kepler published Astronomiae Pars Optica (The Optical Part of Astronomy) in 1604. In it, he described the inverse-square law governing the intensity of light, reflection by flat and curved mirrors, and principles of pinhole cameras, as well as the astronomical implications of optics such as parallax and the apparent sizes of heavenly bodies. Astronomiae Pars Optica is generally recognized as the foundation of modern optics (though the law of refraction is conspicuously absent). Willebrord Snellius (1580–1626) found the mathematical law of refraction, now known as Snell's law, in 1621. Subsequently René Descartes (1596– 1650) showed, by using geometric construction and the law of refraction (also known as Descartes' law), that the angular radius of a rainbow is 42° (i.e. the angle subtended at the eye by the edge of the rainbow and the rainbow's centre is 42°). He also independently discovered the law of reflection, and his essay on optics was the first published mention of this law. 12 Christiaan Huygens (1629–1695) wrote several works in the area of optics. These included the Opera reliqua (also known as Christiani Hugenii Zuilichemii, dum viveret Zelhemii toparchae, opuscula posthuma) and the Traité de la lumière. Isaac Newton investigated the refraction of light, demonstrating that a prism could decompose white light into a spectrum of colours, and that a lens and a second prism could recompose the multicoloured spectrum into white light. He also showed that the coloured light does not change its properties by separating out a coloured beam and shining it on various objects. Newton noted that regardless of whether it was reflected or scattered or transmitted, it stayed the same colour. Thus, he observed that colour is the result of objects interacting with already-coloured light rather than objects generating the colour themselves. This is known as Newton's theory of colour. From this work he concluded that any refracting telescope would suffer from the dispersion of light into colours. The interest of the Royal Society encouraged him to publish his notes On Colour (later expanded into Opticks). Newton argued that light is composed of particles or corpuscles and were refracted by accelerating toward the denser medium, but he had to associate them with waves to explain the diffraction of light. In his Hypothesis of Light of 1675, Newton posited the existence of the ether to transmit forces between particles. In 1704, Newton published Opticks, in which he expounded his corpuscular theory of light. He considered light to be made up of extremely subtle corpuscles, that ordinary matter was made of grosser corpuscles and speculated that through a kind of alchemical transmutation "Are not gross Bodies and Light convertible into one another,...and may not Bodies receive much of their Activity from the Particles of Light which enter their Composition?" Electricity Dr. William Gilbert, in De Magnete, invented the New Latin word electricus from ἤλεκτρον (elektron), the Greek word for "amber". Gilbert undertook a number of careful electrical experiments, in the course of which he discovered that many substances other than amber, such as sulphur, wax, glass, etc., were capable of manifesting electrical properties. Gilbert also discovered that a heated body lost its electricity and that moisture prevented the electrification of all bodies, due to the now well-known fact that moisture impaired the insulation of such bodies. He also noticed that electrified substances attracted all other substances indiscriminately, whereas a magnet only attracted iron. The many discoveries of this nature earned for Gilbert the title of founder of the electrical science. By investigating the forces on a light metallic needle, balanced on a point, he extended the list of electric bodies, and found also that many substances, including metals and natural magnets, showed no attractive forces when rubbed. He noticed that dry weather with north or east wind was the most favourable atmospheric condition for exhibiting electric phenomena— an observation liable to misconception until the difference between conductor and insulator was understood. 13 Robert Boyle also worked frequently at the new science of electricity, and added several substances to Gilbert's list of electrics. He left a detailed account of his researches under the title of Experiments on the Origin of Electricity. Boyle, in 1675, stated that electric attraction and repulsion can act across a vacuum. One of his important discoveries was that electrified bodies in a vacuum would attract light substances, this indicating that the electrical effect did not depend upon the air as a medium. He also added resin to the then known list of electrics. This was followed in 1660 by Otto von Guericke, who invented an early electrostatic generator. By the end of the 17th century, researchers had developed practical means of generating electricity by friction with an electrostatic generator, but the development of electrostatic machines did not begin in earnest until the 18th century, when they became fundamental instruments in the studies about the new science of electricity. The first usage of the word electricity is ascribed to Sir Thomas Browne in his 1646 work, Pseudodoxia Epidemica. In 1729 Stephen Gray (1666–1736) demonstrated that electricity could be "transmitted" through metal filaments. 5.4 NEW MECHANICAL DEVICES As an aid to scientific investigation, various tools, measuring aids and calculating devices were developed in this period. 5.4.1 Calculating Devices John Napier introduced logarithms as a powerful mathematical tool. With the help of the prominent mathematician Henry Briggs their logarithmic tables embodied a computational advance that made calculations by hand much quicker. His Napier's bones used a set of numbered rods as a multiplication tool using the system of lattice multiplication. The way was opened to later scientific advances, particularly in astronomy and dynamics. At Oxford University, Edmund Gunter built the first analog device to aid computation. The 'Gunter's scale' was a large plane scale, engraved with various scales, or lines. Natural lines, such as the line of chords, the line of sines and tangents are placed on one side of the scale and the corresponding artificial or logarithmic ones were on the other side. This calculating aid was a predecessor of the slide rule. It was William Oughtred (1575–1660) who first used two such scales sliding by one another to perform direct multiplication and division, and thus is credited as the inventor of the slide rule in 1622. Blaise Pascal (1623–1662) invented the mechanical calculator in 1642. The introduction of his Pascaline in 1645 launched the development of mechanical calculators first in Europe and then all over the world. Gottfried Leibniz (1646– 1716), building on Pascal's work, became one of the most prolific inventors in the field of mechanical calculators; he was the first to describe a pinwheel calculator, in 1685, and invented the Leibniz wheel, used in the arithmometer, the first mass- 14 produced mechanical calculator. He also refined the binary number system, foundation of virtually all modern computer architectures. John Hadley (1682–1744) was the inventor of the octant, the precursor to the sextant (invented by John Bird), which greatly improved the science of navigation. 5.4.2 Industrial Machines Denis Papin (1647–1712) was best known for his pioneering invention of the steam digester, the forerunner of the steam engine. The first working steam engine was patented in 1698 by the English inventor Thomas Savery, as a "...new invention for raising of water and occasioning motion to all sorts of mill work by the impellent force of fire, which will be of great use and advantage for drayning mines, serveing townes with water, and for the working of all sorts of mills where they have not the benefitt of water nor constant windes”. The invention was demonstrated to the Royal Society on 14 June 1699 and the machine was described by Savery in his book The Miner's Friend; or, An Engine to Raise Water by Fire (1702), in which he claimed that it could pump water out of mines. Thomas Newcomen (1664–1729) perfected the practical steam engine for pumping water, the Newcomen steam engine. Consequently, Thomas Newcomen can be regarded as a forefather of the Industrial Revolution. Abraham Darby I (1678–1717) was the first, and most famous, of three generations of the Darby family who played an important role in the Industrial Revolution. He developed a method of producing high-grade iron in a blast furnace fueled by coke rather than charcoal. This was a major step forward in the production of iron as a raw material for the Industrial Revolution. 5.4.3 Telescopes Refracting telescopes first appeared in the Netherlands in 1608, apparently the product of spectacle makers experimenting with lenses. The inventor is unknown but Hans Lippershey applied for the first patent, followed by Jacob Metius of Alkmaar. Galileo was one of the first scientists to use this new tool for his astronomical observations in 1609. The reflecting telescope was described by James Gregory in his book Optica Promota (1663). He argued that a mirror shaped like the part of a conic section, would correct the spherical aberration that flawed the accuracy of refracting telescopes. His design, the "Gregorian telescope", however, remained un-built. In 1666, Isaac Newton argued that the faults of the refracting telescope were fundamental because the lens refracted light of different colours differently. He concluded that light could not be refracted through a lens without causing chromatic aberrations. From these experiments Newton concluded that no improvement could be made in the refracting telescope. However, he was able to demonstrate that the angle of reflection remained the same for all colours, so he decided to build a 15 reflecting telescope. It was completed in 1668 and is the earliest known functional reflecting telescope. 50 years later, John Hadley developed ways to make precision aspheric and parabolic objective mirrors for reflecting telescopes, building the first parabolic Newtonian telescope and a Gregorian telescope with accurately shaped mirrors. These were successfully demonstrated to the Royal Society. 5.4.4 Other Devices The invention of the vacuum pump paved the way for the experiments of Robert Boyle and Robert Hooke into the nature of vacuum and atmospheric pressure. The first such device was made by Otto von Guericke in 1654. It consisted of a piston and an air gun cylinder with flaps that could suck the air from any vessel that it was connected to. In 1657, he pumped the air out of two conjoined hemispheres and demonstrated that a team of sixteen horses were incapable of pulling it apart. The air pump construction was greatly improved by Robert Hooke in 1658. Evangelista Torricelli (1607–1647) was best known for his invention of the mercury barometer. The motivation for the invention was to improve on the suction pumps that were used to raise water out of the mines. Torricelli constructed a sealed tube filled with mercury, set vertically into a basin of the same substance. The column of mercury fell downwards, leaving a Torricellian vacuum above. 5.4.5 Materials, Construction, and Aesthetics Surviving instruments from this period, tend to be made of durable metals such as brass, gold, or steel, although examples such as telescopes made of wood, pasteboard, or with leather components exist. Those instruments that exist in collections today tend to be robust examples, made by skilled craftspeople for and at the expense of wealthy patrons. These may have been commissioned as displays of wealth. In addition, the instruments preserved in collections may not have received heavy use in scientific work; instruments that had visibly received heavy use were typically destroyed, deemed unfit for display, or excluded from collections altogether. It is also postulated that the scientific instruments preserved in many collections were chosen because they were more appealing to collectors, by virtue of being more ornate, more portable, or made with higher-grade materials. Intact air pumps are particularly rare. The pump at right included a glass sphere to permit demonstrations inside the vacuum chamber, a common use. The base was wooden, and the cylindrical pump was brass. Other vacuum chambers that survived were made of brass hemispheres. Instrument makers of the late seventeenth and early eighteenth century were commissioned by organizations seeking help with navigation, surveying, warfare, and astronomical observation. The increase in uses for such instruments, and their widespread use in global exploration and conflict, created a need for new methods of manufacture and repair, which would be met by the Industrial Revolution. 16 Check Your Progress 1. Write a short note on Scientific Experimentation. ………………………………………………………………………………………… ………………………………………………………………………………………… ………………………………………………………………………………………… ………………………………………………………………………………………… ………………………………………………………………………………………… 2. Give a brief account on Biology and Medicine. ………………………………………………………………………………………… ………………………………………………………………………………………… ………………………………………………………………………………………… ………………………………………………………………………………………… ………………………………………………………………………………………… 3. Discuss about Industrial Machines. ………………………………………………………………………………………… ………………………………………………………………………………………… ………………………………………………………………………………………… ………………………………………………………………………………………… ………………………………………………………………………………………… 5.5 LET US SUM UP The scientific revolution laid the foundations for the Age of Enlightenment, which centred on reason as the primary source of authority and legitimacy, and emphasized the importance of the scientific method. By the 18th century, when the Enlightenment flourished, scientific authority began to displace religious authority, and disciplines until then seen as legitimately scientific (e.g., alchemy and astrology) lost scientific credibility. Science came to play a leading role in Enlightenment discourse and thought. Many Enlightenment writers and thinkers had backgrounds in the sciences, and associated scientific advancement with the overthrow of religion and traditional authority in favour of the development of free speech and thought. Broadly speaking, Enlightenment science greatly valued empiricism and rational thought, and was embedded with the Enlightenment ideal of advancement and progress. At the time, science was dominated by scientific societies and academies, which had largely replaced universities as centres of scientific research and development. Societies and academies were also the backbone of the maturation of the scientific profession. Another important development was the popularization of science among an increasingly literate population. The century saw significant advancements in the practice of medicine, mathematics, and physics; the development of biological taxonomy; a new understanding of magnetism and electricity; and the maturation of chemistry as a discipline, which established the foundations of modern chemistry. 17 5.6 KEY WORDS Empiricism: A theory stating that knowledge comes only, or primarily, from sensory experience. It emphasizes evidence, especially the kind of evidence gathered through experimentation and by use of the scientific method. Baconian Method: The investigative method developed by Sir Francis Bacon. It was put forward in Bacon’s book Novum Organum (1620), (or New Method), and was supposed to replace the methods put forward in Aristotle’s Organon. This method was influential upon the development of the scientific method in modern science, but also more generally in the early modern rejection of medieval Aristotelianism. Copernican Revolution: The paradigm shift from the Ptolemaic model of the heavens, which described the cosmos as having Earth stationary at the centre of the universe, to the heliocentric model with the sun at the centre of the solar system. Scientific Method: A body of techniques for investigating phenomena, acquiring new knowledge, or correcting and integrating previous knowledge, through the application of empirical or measurable evidence subject to specific principles of reasoning. It has characterized natural science since the 17th century, consisting in systematic observation, measurement, and experiment, and the formulation, testing, and modification of hypotheses. 5.7 ANSWERS TO CHECK YOUR PROGRESS EXERCISES Check Your Progress 1. See Sub Section 5.2.3 2. See Sub Section 5.3.2 3. See Sub Section 5.4.2 18 UNIT 6 : IMPACT OF MODERN SCIENCE ON EUROPEAN SOCIETY Structure 6.0 Objectives 6.1 Introduction 6.2 Science and Philosophy before the Revolution 6.3 The Advent of the Scientific Revolution–17th Century 6.4 Case Studies of Scientists and Their “Experimental Methods” 6.5 The Role of the Royal Society 6.6 Let Us Sum Up 6.7 Key Words 6.8 Answers to Check Your Progress Exercises 6.0 OBJECTIVES After reading this unit you will be able to expain; nature of science and philosophy before the scientific revolution, various developments in during 17th century, and different case studies on scientific experimentation methods. 6.1 INTRODUCTION The beginning of the seventeenth century is known as the “scientific revolution” for the drastic changes evidenced in the European approach to science during that period. The word “revolution” connotes a period of turmoil and social upheaval where ideas about the world change severely and a completely new era of academic thought is ushered in. This term, therefore, describes quite accurately what took place in the scientific community following the sixteenth century. During the scientific revolution, medieval scientific philosophy was abandoned in favour of the new methods proposed by Bacon, Galileo, Descartes, and Newton, the importance of experimentation to the scientific method was reaffirmed, the importance of God to science was for the most part invalidated, and the pursuit of science itself (rather than philosophy) gained validity on its own terms. The change to the medieval idea 19 of science occurred for four reasons: (1) seventeenth century scientists and philosophers were able to collaborate with members of the mathematical and astronomical communities to effect advances in all fields, (2) scientists realized the inadequacy of medieval experimental methods for their work and so felt the need to devise new methods (some of which we use today), (3) academics had access to a legacy of European, Greek, and Middle Eastern scientific philosophy they could use as a starting point (either by disproving or building on the theorems), and (4) groups like the British Royal Society helped validate science as a field by providing an outlet for the publication of scientists’ work. These changes were not immediate, nor did they directly create the experimental method used today, but they did represent a step toward Enlightenment thinking (with an emphasis on reason) that was revolutionary for the time. Assessment of the state of science before the scientific revolution, examination of the differences in the experimental methods utilized by different “scientists” during the seventeenth century, and exploration into how advances made during the scientific revolution affected the scientific method used in science today will provide an idea of how revolutionary the breakthroughs of the seventeenth century really were and what impact they have had. 6.2 SCIENCE AND PHILOSOPHY BEFORE THE REVOLUTION In immediate contrast to modern times, only a few of Europe’s academics at the beginning of the scientific revolution and the end of the sixteenth century considered themselves to be “scientists.” The words “natural philosopher” carried much more academic clout and so the majority of the research on scientific theory was conducted not in the scientific realm per se, but in philosophy, where “scientific methods” like empiricism and teleology were promoted widely. In the 17th century, empiricism and teleology existed as remnants of medieval thought that were utilized by philosophers such as William of Ockham, an empiricist (1349), Robert Boyle, a 17th century chemist, teleologist and mechanist, and by the proponents of Plato and Aristotle (1st century teleologists and abstractionists). Both empiricism, as the theory that reality consists solely of what one physically experiences, and teleology, as the idea that phenomena exist only because they have a purpose (i.e. because God wills them to be so), generally negated the necessity of fact-gathering, hypothesis writing, and controlled experimentation that became such an integral part of modern chemistry and biology at the beginning of the 17th century. In other words, the study of science before the scientific revolution was so concentrated on philosophy (such as Aristotle’s conception of “ideas” as ultimate truths) as to preclude the development of a scientific method that would necessitate the creation of an informed hypothesis to be tested. Certain medieval philosophers, however, such as Roger Bacon (1214-1294, no relation to Francis), did emphasize the necessity of controlled experimentation in coming to a theoretical conclusion, but they were few and far between, and generally failed to correctly use the experimental method in 20 practice. For example, author Hall wrote that “Bacon guilty of misstatements of fact which the most trifling experiment would have corrected”. 6.3 THE ADVENT OF THE SCIENTIFIC REVOLUTION–17TH CENTURY A.R. Hall, in his book the Scientific Revolution 1500-1800, made the observation that a main point dividing scientific thought in the seventeenth century from that of the ancient Greeks and medieval Europeans was the choice of questions each group sought to answer through their methods of research or observation. He argued that the first group, that of Copernicus and da Vinci (15th and 16th centuries), focused more on questions of “how can we demonstrate that” or “how may it be proved that” that aimed to prove a defined hypothesis true or false, while the second group (that of 17th century chemists and physiologists) emphasized questions phrased as “what is the relationship between” or “what are the facts bearing upon” that necessitated fact- finding before a concrete hypothesis could be formulated. The most important point to remember here is that both the questions posed in the 15th century and those of the 17th century form part of the definition of a complete modern “experimental method” – the first type of question cannot stand alone. A concrete hypothesis must be accompanied by sufficient, independently verifiable observations in order for the scientist to make a vague inference (a form of hypothesis) that can then be tested with a controlled experiment. The way the scientist/philosopher comes by this “vague inference” that will form a concrete hypothesis differs, and these differences can be described as the scientists’ different approaches toward an “experimental method”. The following portion of the module will give an idea of the types of experimental methods promoted by 17th century scientists as well as their impact on the standard experimental method utilized and accepted by chemists, biologists, and physicists today. 6.4 CASE STUDIES OF SCIENTISTS AND THEIR “EXPERIMENTAL METHODS” Francis Bacon (1561-1626): Bacon represents a first step away from sixteenth century thinking, in that he denied the validity of empiricism (see introduction) and preferred inductive reasoning (the method of deriving a general “truth” from observation of certain similar facts and principles) to the Aristotelian method of deductive reasoning (the method of using general principles to explain a specific instance, where the particular phenomena is explained through its relation to a “universal truth”). Moreover, like Roger Bacon of the 13th century, Francis Bacon argued that the use of empiricism alone is insufficient, and thus emphasized the necessity of fact-gathering as a first step in the scientific method, which could then be followed by carefully recorded and controlled (unbiased) experimentation. Bacon largely differed from his sixteenth century counterparts in his insistence that experimentation should not be conducted to simply “see what happens” but “as a 21 way of answering specific questions”. Moreover, he believed, as did many of his contemporaries that a main purpose of science was the betterment of human society and that experimentation should be applied to hard, real situations rather than to Aristotelian abstract ideas. His experimental method of fact-gathering largely influenced advances in chemistry and biology through the 18th century. Galileo Galilei (1564-1642): Galileo’s experimental method contrasted with that of Bacon in that he believed that the purpose of experimentation should not simply be a means of getting information or of eliminating ignorance, but a means of testing a theory and of testing the success of the very “testing method”. Galileo argued that phenomena should be interpreted mechanically, meaning that because every phenomenon results from a combination of the most basic phenomena and universal axioms, if one applies the many proven theorems to the larger phenomenon, one can accurately explain why a certain phenomenon occurs the way it does. In other words, he argued that “an explanation of a scientific problem is truly begun when it is reduced to its basic terms of matter and motion”, because only the most basic events occur because of one axiom. For example, one can demonstrate the concept of “acceleration” in the laboratory with a ball and a slanted board, but to fully explain the idea using Galileo’s reasoning, one would have to utilize the concepts of many different disciplines: the physics-based concepts of time and distance, the idea of gravity, force, and mass, or even the chemical composition of the element that is accelerating, all of which must be individually broken down to their smallest elements in order for a scientist to fully understand the item as a whole. This “mechanic” or “systemic” approach, while necessitating a mixture of elements from different disciplines, also partially removed the burden of fact-gathering emphasized by Bacon. In other words, through Galileo’s method, one would not observe the phenomenon as a whole, but rather as a construct or system of many existing principles that must be tested together, and so gathering facts about the performance of the phenomenon in one situation may not truly lead to an informed observation of how the phenomenon would occur in a perfect circumstance, when all laws of matter and motion come into play. Galileo’s abstraction of everything concerning the phenomenon except the universal element (e.g. matter or motion) contrasted greatly with Bacon’s inductive reasoning, but also influenced the work of Descartes, who would later emphasize the importance of simplification of phenomena in mathematical terms. Galileo’s experimental method aided advances in chemistry and biology by allowing biologists to explain the work of a muscle or any body function using existing ideas of motion, matter, energy, and other basic principles. René Descartes (1596-1650): Descartes disagreed with Galileo’s and Bacon’s experimental methods because he believed that one could only: (1) Accept nothing as true that is not self-evident. (2) Divide problems into their simplest parts. (3) Solve problems by proceeding from simple to complex. (4) Recheck the reasoning. That these “4 laws of reasoning” followed from Descartes’ ideas on mathematics (he 22 invented derivative and integral calculus in order to better explain natural law) gives the impression that Descartes, like many 17th century philosophers, were using advances in disciplines outside philosophy and science to enrich scientific theory. Additionally, the laws set forth by Descartes promote the idea that he trusted only the fruits of human logic, not the results of physical experimentation, because he believed that humans can only definitely know that “they think therefore they are”, Thus, according to Descartes’s logic, we must doubt what we perceive physically (physical experimentation is imperfect) because our bodies are external to the mind (our only source of truth, as given by God). Even though Descartes denounced Baconian reasoning and medieval empiricism as shallow and imperfect, Descartes did believe that conclusions could come about through acceptance of a centrifugal system, in which one could work outwards from the certainty of existence of mind and God to find universal truths or laws that could be detected by reason. It was to this aim that Descartes penned the above “4 laws of reasoning” – to eliminate unnecessary pollution of almost mathematically exact human reason. Robert Boyle (1627-1691): Boyle is an interesting case among the 17th century natural philosophers, in that he continued to use medieval teleology as well as 17th century Galilean mechanism and Baconian induction to explain events. Even though he made progress in the field of chemistry through Baconian experimentation (fact- finding followed by controlled experimentation), he remained drawn to teleological explanations for scientific phenomena. For example, Boyle believed that because “God established rules of motion and the corporeal order – laws of nature,” phenomena must exist to serve a certain purpose within that established order. Boyle used this idea as an explanation for how the “geometrical arrangement of the atoms defined the chemical characteristics of the substance”. Overall, Boyle’s attachment to teleology was not so strange in the 17th century because of Descartes’ appeal to a higher being as the source of perfection in logic. Hooke (1635-1703): Hooke, the Royal Society’s first Curator of Experiments from 1662-1677, considered science as way of improving society. This was in contrast to medieval thought, where science and philosophy were done for knowledge’s sake alone and ideas were tested just to see if it could be done. An experimentalist who followed the Baconian tradition, Hooke agreed with Bacon’s idea that “history of nature and the arts” was the basis of science. He was also a leader in publicizing microscopy (not discovering, it had been discovered 30 years prior to his Micrographia). Sir Isaac Newton (1643-1747): Newton invented a method that approached science systematically. He composed a set of four rules for scientific reasoning. Stated in the Principia, Newton’s four way framework was: (1) Admit no more causes of natural things such as are both true and sufficient to explain their appearances, (2) The same natural effects must be assigned to the same causes, (3) Qualities of bodies are to be esteemed as universal, and (4) Propositions deduced from observation of phenomena should be viewed as accurate until other phenomena contradict them. His analytical 23 method was a critical improvement upon the more abstract approach of Aristotle, mostly because his laws lent themselves well to experimentation with mathematical physics, whose conclusions “could then be confirmed by direct observation”. Newton also refined Galileo’s experimental method by creating the contemporary “compositional method of experimentation” that consisted in making experiments and observations, followed by inducted conclusions that could only be overturned by the realization of other, more substantiated truths. Essentially, through his physical and mathematical approach to experimental design, Newton established a clear distinction between “natural philosophy” and “physical science”. All of these natural philosophers built upon the work of their contemporaries, and this collaboration became even simpler with the establishment of professional societies for scientists that published journals and provided forums for scientific discussion. The next section discusses the impact of these societies, especially the British Royal Society. 6.5 THE ROLE OF THE ROYAL SOCIETY Along with the development of science as a discipline independent from philosophy, organizations of scholars began to emerge as centers of thought and intellectual exchange. Arguably the most influential of these was the Royal Society of London for the Improvement of Natural Knowledge, which was established in 1660 with Robert Hooke as the first Curator of Experiments. Commonly known as the Royal Society, the establishment of this organization was closely connected with the development of the history of science from the seventeenth century onwards. The origins of the Royal Society grew out of a group of natural philosophers (later known as "scientists") who began meeting in the mid-1640s in order to debate the new ideas of Francis Bacon. The Society met weekly to witness experiments and discuss what we would now call scientific topics. A common theme was how they could learn about the world through experimental investigation. The academy became an indispensable part of the development of modern science because in addition to fostering discussing among scientists, the Royal Academy became the de facto academy for scientific study in Europe. Accomplished scientists served as Royal Academy Fellows and exchanged ideas both casually and formally through the publication of articles and findings. These scholars, especially Francis Bacon, served as an important resource for the justification of the new fact- gathering, experiment-based experimental method as well as for the validation of "modern (17th century) science". Moreover, the work they published through the society helped gain credibility for the society and for science as a discipline. For example, scholars such as Robert Boyle published significant scientific findings in its unofficial journal Philosophical Transactions. Other famous scientists that joined the society included Robert Boyle, Isaac Newton and William Petty, all of whom benefited from academic collaboration within the society and from increased publicity generated by their published works. 24 Dedicated to the free exchange of scientific information, the Royal Society of London - and later, its counterparts throughout Europe such as The Hague and the Academy of Sciences in Paris - proved crucial to the discussion and design of modern science and the experimental method. Although the Royal Society was a governmentally established body, it acted independently as a body dedicated to research and scientific discovery - that is to say, to improving knowledge and integrating all kinds of scientific research into a coherent system. With such a central artery for scientific progress, scientists were able to more quickly and fiercely support and promote their new ideas about the world. Check Your Progress 1. Discuss the nature of Science and Philosophy before the Revolution. ………………………………………………………………………………………… ………………………………………………………………………………………… ………………………………………………………………………………………… ………………………………………………………………………………………… ………………………………………………………………………………………… ………………………………………………………………………………………… 2. Write a note on Galileo Galilei’s contribution to scientific world. ………………………………………………………………………………………… ………………………………………………………………………………………… ………………………………………………………………………………………… ………………………………………………………………………………………… ………………………………………………………………………………………… ………………………………………………………………………………………… 6.6 LET US SUM UP The lesson to take from the history of the scientific revolution is that the ideas of the 17th century philosophers have the most impact in the context of the progress they made as an academic whole – as singular scientists, they became more prone to faulty logic and uncontrolled experimentation. For instance, non-scientific reasoning such as teleology continued to affect genius philosophers and scientists such as Descartes and Boyle, and today scientists are faced with the problem of intelligent design (teleology) being taught as the equivalent of peer-reviewed, substantiated evolutionary theory. Overall, modern scientists remain just as pronto the same problems as the 17th century philosophers and therefore might consider looking toward the legacy of the successes of the scientific revolution against the backward medieval philosophy for guidance. 6.7 KEY WORDS Baconian : an adherent of Bacon's philosophical system. 25 Teleology : the doctrine of design and purpose in the material world. 6.8 ANSWERS TO CHECK YOUR PROGRESS EXERCISES Check Your Progress 1. See Section 6.2 2. See Section 6.4 SUGGESTED READINGS Hall, A R. (1954) The Scientific Revolution 1500-1800: The formation of the Modern Scientific Attitude. London and Colchester: Longmans, Green and Co. Hellyer, Marcus (2003) The Scientific Revolution. Oxford: Blackwell Publishing Ltd. Peter (2005) Revolutionizing the Sciences: European Knowledge and Its Ambitions, 1500-1700. Princeton: Princeton University Press. 26