رياضيات الإحصاء - دراسة معطيات
Document Details
Uploaded by FinerBurgundy7473
كلية العلوم
Tags
Summary
يُقدم هذا المستند ملخصاً مُفصلاً لمبادئ الإحصاء الرياضي، ويشرح كيفية حساب الوسط الحسابي، والوسط الهندسي، والوسط التوافقي، مع تطبيقات عملية على بيانات مجموعة مُختلفة. كما يُلقي الضوء على توزيعات البيانات، وكيف يُمكن حساب الوسيط من خلالها.
Full Transcript
# إحصاء رياضي ## Chapter 2 ### Measures of central tendency * **Measures of location** 1. **The Arithmetic mean (A.M)**: * الوسط الحسابي * $A.M = X = \frac{\sum_{i=1}^{n}x_i}{n} = \frac{x_1 + x_2 +...+x_n}{n}$ * **Example 1:** The ages of ten students are:...
# إحصاء رياضي ## Chapter 2 ### Measures of central tendency * **Measures of location** 1. **The Arithmetic mean (A.M)**: * الوسط الحسابي * $A.M = X = \frac{\sum_{i=1}^{n}x_i}{n} = \frac{x_1 + x_2 +...+x_n}{n}$ * **Example 1:** The ages of ten students are: 16, 20, 19, 21, 18, 20, 17, 22, 20, 17. Determine the mean age. * **Solution:** $X = \frac{16 + 20 + 19 + 21 + 18 + 20 + 17 + 22 + 20 + 17 }{10}$ $=\frac{190}{10} = 19$. * Let the frequency of the number *x*₁ be *f*₁, the frequency of the number *x*₂ be *f*₂, and so on. Then, $X = \frac{\sum_{i=1}^{n}f_i x_i}{ \sum_{i=1}^{n}f_i}$ (1) * **Example 2:** Find the mean for the following data: 2 5 6 5 2 6 8 5 8 6 6 7 9 * **Solution:** $X = \frac{2 + 5 + 6 + 5 + 2 + 6 + 8 + 5 + 8 + 6 + 6 + 7 + 9}{13}$ $= \frac{(2*2)+(5*3) + (6×4)+(8*2) + 7 + 9}{2 + 3 + 4 +2+1+1}$ $= \frac{75}{13}$ $= 5.77$. * Note: Equation (1) is the same one we use for the mean of grouped data (data that is tabulated). ### 2 **The Harmonic mean (H.M)** * The reciprocal of the arithmetic mean of the reciprocals of the numbers. * $H.M = \frac {n}{ \sum_{i=1}^{n} \frac{1}{x_i} } = \frac{\sum_{i=1}^{n} f_i}{ \sum_{i=1}^{n} \frac{f_i}{x_i} }$ * **Example 4:** Find the H.M for 2, 4, 8, 11, 4 * **Solution:** $H.M = \frac{5}{ \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{11} + \frac{1}{4} } = \frac{5}{(107/80)}$ $= 4.112$. * **Notes:** 1. Extreme values have the least effect. 2. The formula breaks down when "Zero" is one of the observations. ### 3 **The Geometric mean (G.M)**: * $G.M = \sqrt[n]{x_1 . x_2 ... x_n} $ * $= \sqrt[n]{(x_1^{f_1})*(x_2^{f_2})* ... *(x_n^{f_n})}$ * **Example 5:** Find the G.M for 5, 8, 12, 25. * **Solution** $G.M = \sqrt[4]{5*8*12*25} = 10.466$. * **Notes:** 1. The formula breaks down when "Zero" is one of the observations. 2. In general, H.M <= G.M <= A.M . The equality signs hold only if all the observations are identical. 3. $ln G.M = ln(\sqrt[n]{x_1 . x_2 ... x_n} )= \frac{1}{n} \sum_{i=1}^{n} ln x_i $ 4. $= \frac{ln x_1 + ln x_2 + ... + ln x_n}{n}$ 5. $= \frac{ \sum_{i=1}^{n} f_i ln x_i + \sum_{i=1}^{n} f_i ln x_2 + ... + \sum_{i=1}^{n} f_i ln x_n }{ \sum_{i=1}^{n} f_i}$ 6. $= \frac{ \sum_{i=1}^{n} f_i ln x_i} { \sum_{i=1}^{n} f_i} $ * **Example:** For the following frequency table: | Interval | Frequency | |---|---| | 3-7 | 8 | | 7-11 | 2 | | 11-15 | 13 | | 15-19 | 5 | | 19-23 | 3 | | 23-27 | 7 | | 27-31 | 2 | Find: * Arithmetic mean * Harmonic mean * Geometric mean * **Solution** * $A.M = \frac{608}{40} = 15.2$ * $H.M = \frac{40}{3.6} = 11.1$ * $ln G.M = \frac{103.27}{40} = 2.58$ * $G.M = e^{2.58} = 13.2$ ### 4 **The median:** الوسيط * The value of the variable that divides a distribution into two equal parts when the values are arranged in order of magnitude. * $X = \begin{cases} \frac{x_n + 1}{2} \quad if \quad n \quad odd \\ \frac{x_n}{2} \quad + \quad \frac{x_{n+1}}{2} \quad if \quad n \quad even \end{cases}$ * **Example 6:** Find the median for: 1. 15, 22, 17, 25, 15, 19, 21 2. 4, 5, 6, 8, 9, 10, 12, 15 * **Solution:** * 1. n = 7 odd $\implies$ $X = x_4 = \frac{x_3+ x_4}{2}$ * $x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_7$ * $15 \quad 15 \quad 17 \quad 19 \quad 21 \quad 22 \quad 25$ * $\implies X = 19$. * 2. n = 8 even $\implies$ $X = \frac{x_4+x_5}{2} = \frac{8+9}{2} = 8.5$. ### **Median for grouped data:** * $X= L+ (\frac{\frac{n}{2} - f_c }{f_{median}} ) * W$ * **L** $\implies$ Lower class boundary of the median class * **n/2** $\implies$ n/2 * **f_c** $\implies$ Cumulative frequency before the median class. * **f_median** $\implies$ Frequency of median class. * **W** $\implies$ Width or class size * **Example 7:** The table below shows the height of 70 men randomly selected at Ismailia. | Height | Frequency | |---|---| | 117-126 | 8 | | 126-135 | 10| | 135-144 | 14 | | 144-153 | 18 | | 153-162 | 9 | | 162-171 | 7 | | 171-180 | 4| Compute the median. * **Solution:** * n/2 = /frac{\sum f_i}{2}= \frac{70}{2} = 35 * 8 + 10 + 14 + 18 = 50 > 35 * Therefore, the median class is 144-153 * $X = 144 + (\frac{35 - 32}{18}) * 9 = 144+ 1.5$ * $X = 145.5$. * **Note:** The median is not affected by extreme values. * **Ordered Data:** H... Q1 ... median... Q3... D5... P99 * **Q:** quartile الربيع * **D:** decile عشر * **P:** percentile مئيات * *Q*₁ = *L* + ( /frac{n}{4} - *f_c* / *f_Q*) * *W* * *D*₁ = *L* + ( /frac{n}{10} - *f_c* / *f_D*) * *W* * *P*₁ = *L* + ( /frac{n}{100} - *f_c* / *f_P*) * *W* ### 5 **The mode:** المنوال * Is the value of the data which occurs most frequently. * **EX:** 1. 2, 5 2, 7, 3, 8 have mode = 2 (unimodal) 2. 2, 5, 2, 7, 5, 8 have mode = 2 and 5 (bimodal) 3. 2, 5, 2, 7, 5, 7, 8, 11 have mode = 2, 5 and 7. (multimodal) 4. 2, 5, 7, 3, 8, 9 have no mode. 5. 2, 5, 2, 3, 5, 7, 8, 5 have mode = 5. ### **Mode for grouped data:** * Mode = *L* + (*\frac{Δ_1}{Δ_1 + Δ_2}*) * *W* * **L** $\implies$ Lower class boundary of the modal class. * **Δ_1** $\implies$ The difference between the frequency of the modal class and the previous class. * **Δ_2** $\implies$ The difference between the frequency of the modal class and the next class. * **W** $\implies$ Width of the class. * **Example 8:** For the table below, find the mode. | Class | Frequency | |---|---| | 10-20 | 6 | | 20-30 | 20 | | 30-40 | 12 | | 40-50 | 10 | | 50-60 | 9 | | 60-70 | 9 | * **Solution** * The modal class is 20-30 as it has the highest frequency (20). * Mode = 20 + ( /frac{20-6}{ (20-6) + (20-12) } ) * 10 = 20 + ( /frac{14}{14+8} ) * 10 = 20 + ( /frac{140}{22} ) = 26.4 ### **Notes:** 1. **For symmetric distribution:** Mode = median = mean 2. **For asymmetric distribution:** * Mean - Mode = 3 (Mean - median) * Or * Mode = 3 median - 2 mean * In case of unimodal distributions.