Aviónica - Sistemas de Proteção Contra EFEITOS de Chuva e Gelo - Módulo I - PDF
Document Details
Uploaded by Deleted User
Tags
Summary
This document covers the electrical systems for preventing the effects of rain and ice on aircraft, focusing on how the windshield wipers work. The information is presented in a detailed manner including diagrams for a clear understanding.
Full Transcript
Seja bem vindo á 14Bis Aviação! Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com Aviônica Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com ...
Seja bem vindo á 14Bis Aviação! Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com Aviônica Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com MODULO I Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com SISTEMAS DE PROTEÇÃO CONTRA OS EFEITOS DA CHUVA E DO GELO INTRODUÇÃO Caro aluno! A disciplina de Sistemas Elétricos de Proteção Contra os Efeitos da Chuva, do Gelo e Contra Fogo, objetiva levar você ao conhecimento das particularidades específicas dos métodos de prevenção, controle e extinção desses eventos em aeronaves e as necessidades apresentadas por cada tipo de motor. O tema está dividido em dois módulos, a saber: Módulo I: Sistemas de Proteção contra Efeitos da Chuva e Gelo. Módulo II: Sistemas de Proteção contra Fogo no Motor. Convidamos você a nos acompanhar nesta viagem enriquecedora e, que ao final de nosso estudo, você esteja familiarizado com este universo e sua abrangência. Bons estudos!! Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com 1.1 PROTEÇÃO CONTRA OS EFEITOS DA CHUVA Sistemas Elétricos Limpadores de Para-brisas Em um sistema elétrico, limpador de para-brisas, as palhetas limpadoras são giradas por um ou mais motores, que recebem energia do sistema elétrico da aeronave. Em algumas aeronaves, os limpadores de para-brisas do piloto e o do copiloto são operados por sistemas separados, para assegurar que será mantida uma boa visão em uma das partes do para-brisa se um dos sistemas falhar. A figura 8-1 mostra uma típica instalação elétrica de limpador de para-brisas. Um limpador operado eletricamente está instalado em cada painel do para-brisa. Cada limpador é girado por um conjunto motor conversor. Os conversores mudam o movimento rotativo do motor para um movimento alternado, para operar os braços de comando. Um eixo do conjunto fornece os meios de fixação do braço de comando. Figura 8-1 Sistema elétrico de limpador de para-brisas Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com Figura 8-2 Circuito elétrico do limpador de para-brisas Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com O limpador de para-brisas é controlado pela seleção do interruptor de controle, para a velocidade desejada. Quando a posição "HIGH" é selecionada (figura 8-2), os relés 1 e 2 são energizados. Com ambos os relés energizados, o campo 1 e o campo 2 são energizados em paralelo. O circuito é completado e o motor opera a uma velocidade aproximada de 250 golpes por minuto. Quando a posição "LOW" é selecionada, o relé 1 é energizado. Isto faz com que o campo 1 e o 2 sejam energizados em série. O motor então, opera a aproximadamente 160 golpes por minuto. Selecionando o interruptor para a posição "OFF", ele permite aos contatos do relé retornarem às suas posições normais. No entanto, o motor do limpador continua a girar até que o braço de comando atinja a posição "PARK". Quando ambos os relés estiverem abertos e o interruptor "PARK" estiver fechado, a excitação do motor será revertida. Isto causa o movimento do limpador fora da borda inferior do para-brisa, abrindo o interruptor de parqueamento, operado por ressalto. Isto desenergiza o motor e solta o solenoide do freio e assegura que o motor não deslizará, tornando a fechar o interruptor de parqueamento. Figura 8-3 Componentes do limpador de para-brisas de helicóptero Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com Um sistema limpador de para-brisas instalado em helicóptero consiste de um braço (1) impulsionado por um motor elétrico (3) cujo movimento de rotação é transformado em batimento por um sistema "biela-manivela" (2). 1) Características: Condição de utilização: o limpador de para-brisa é eficaz até 185 km/h (100kt). Velocidade de batimento: 60 movimentos de ida-e-volta por minuto; Consumo do motor: 3 A; Potência máxima: 220 W; O motor é equipado com um redutor e supressor de ruído. Funcionamento: Com o botão (1) pressionado, o motor é alimentado e aciona o braço do limpador por meio do sistema "biela-manivela". Quando o botão é acionado para a posição "desligado", o motor continua a ser alimentado pelo circuito paralelo (4) até o momento em que a escova de alimentação (3) perde contato com o came (2) acionado pelo motor. O motor para em posição "estacionamento". Figura 8-4 Esquema do circuito elétrico Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com O came de parada está montado em relação ao sistema "biela-manivela" de tal maneira que o corte de alimentação que ele provoca corresponde à posição "estacionamento" parando o braço do limpador à direita do para-brisa. Nota: o limpador de para-brisas nunca deve funcionar num para-brisas seco. Chuva, neve e gelo são velhos inimigos dos transportes. Em voo, é adicionada uma nova dimensão, particularmente com respeito ao gelo. Sob certas condições atmosféricas, o gelo pode formar-se rapidamente nos aerofólios e entradas de ar. Os dois tipos de gelo encontrados durante o voo são: o gelo opaco e o vítreo. O gelo opaco forma uma superfície áspera nos bordos de ataque da aeronave, porque a temperatura do ar é muito baixa e congela a água antes que ela tenha tempo de espalhar- se. O gelo vítreo forma uma camada lisa e espessa sobre os bordos de ataque da aeronave. Quando a temperatura está ligeiramente abaixo do ponto de congelamento, a água tem mais tempo para fluir antes de congelar-se. Deve ser esperada a formação de gelo, sempre que houver umidade visível no ar, e a temperatura estiver próxima ou abaixo do ponto de congelamento. Uma exceção é o congelamento no carburador que pode ocorrer durante o tempo quente sem a presença visível de umidade. Se for permitido o acúmulo de gelo no bordo de ataque das asas e da empenagem, ele irá destruir as características de sustentação do aerofólio. O acúmulo de gelo ou chuva no para-brisa, interfere na visibilidade. Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com Efeitos do Gelo Gelo acumulado em uma aeronave afeta a sua performance e a sua eficiência de várias maneiras. A formação de gelo aumenta a resistência ao avanço (arrasto) e reduz a sustentação. Ele causa vibrações destrutivas e dificulta a leitura verdadeira dos instrumentos. As superfícies de controle ficam desbalanceadas ou congeladas. As fendas (slots) fixas são preenchidas e as móveis emperradas. A recepção de rádio é prejudicada e o desempenho do motor é afetado (Figura 8-5) Os métodos usados para evitar a formação de gelo (antigelo) ou para eliminar o gelo que foi formado (degelo) varia com o tipo de aeronave e com o modelo. Neste módulo, será discutida a prevenção contra o gelo e a eliminação do gelo formado, usando pressão pneumática, aplicação de calor e a aplicação de fluido. Figura 8-5 Efeitos da formação de gelo Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com Prevenção Contra a Formação de Gelo Vários meios de evitar ou controlar a formação de gelo são usados hoje em dia em aeronaves: (1) aquecimento das superfícies usando ar quente, (2) aquecimento por elementos elétricos, (3) remoção da formação de gelo, feito normalmente por câmaras infláveis (boots), e (4) álcool pulverizado. Uma superfície pode ser protegida contra a formação de gelo mantendo a superfície seca pelo aquecimento, para uma temperatura que evapore a água próxima à colisão com a superfície; ou pelo aquecimento da superfície, o suficiente para evitar o congelamento, mantendo-a constantemente seca ou ainda sendo a superfície degelada, após permitir a formação do gelo e removê-lo em seguida. Sistemas de eliminação ou prevenção contra o gelo asseguram a segurança do vôo quando existir uma condição de congelamento. O gelo pode ser controlado na estrutura da aeronave pelos métodos apresentados na tabela 1. Tabela 1 Sistemas de eliminação ou prevenção de gelo Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com Sistemas de Controle do Gelo do Para-brisa Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com Com a finalidade de manter as áreas das janelas livres de gelo, geada, etc, são usados sistemas de antigelo. O sistema varia de acordo com o tipo de aeronave e do fabricante. Alguns para-brisas são fabricados com painéis duplos, havendo um espaço entre eles que permite a circulação de ar aquecido entre as superfícies, para controlar a formação de gelo e de névoa. Outros utilizam limpadores mecânicos e fluido antigelo borrifado no para-brisa. Um dos mais comuns métodos para controlar a formação de gelo e névoa nas janelas das modernas aeronaves, é o uso de um elemento de aquecimento elétrico entre as lâminas do material da janela. Quando esse método é usado em aeronaves pressurizadas, uma camada de vidro temperado dá resistência para suportar a pressurização. Uma camada de material condutor transparente (óxide stannic) é o elemento de aquecimento, e uma camada de plástico vinil transparente adiciona uma qualidade de não estilhaçamento à janela. As placas de vinil e de vidro (Figura 8-6) estão coladas pela aplicação de pressão e calor. A união é obtida sem o uso de cimento devido à afinidade natural do vinil e do vidro. A camada condutiva dissipa a eletricidade estática do para-brisa, além de fornecer o elemento de aquecimento. Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com Em algumas aeronaves, interruptores termoelétricos, automaticamente ligam o sistema quando a temperatura do ar está baixa o suficiente para ocorrer formação de geada ou gelo. O sistema pode manter-se ligado durante todo o tempo em que se mantiver essa temperatura; ou em algumas aeronaves, ela pode operar com um dispositivo pulsativo de liga-desliga. Interruptores térmicos de superaquecimento, automaticamente desligam o sistema no caso de uma condição de superaquecimento, a qual danificaria a transparência da área. Figura 8-6 Secção de um para-brisa Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com Um sistema de aquecimento elétrico do para-brisa inclui o seguinte: 1.Para-brisas autotransformadores e relés de controle de aquecimento. 2.Interruptor de mola de controle de aquecimento. 3. Luzes de indicação. 4. Unidades de controle do para-brisa. 5. Elementos sensores de temperatura (termistores) laminados no painel. Um sistema típico é mostrado na Figura 87. O sistema recebe energia elétrica das barras de 115 volts C.A. através dos disjuntores ("circuit breakers") de controle do aquecimento do para-brisa, e quando o interruptor de controle for selecionado para "Hihg", 115V. 400HZ C.A., são supridos para os amplificadores da esquerda e da direita na unidade de controle do para-brisas. O relé de controle de aquecimento do para-brisa é energizado, aplicando por este meio 200V 400Hz C.A. para os autotransformadores de aquecimento do para-brisa. Esses autotransformadores fornecem 218 V, C.A. para a barra coletora da corrente de aquecimento do para-brisa através dos relés da unidade de controle. Figura 8-7 Circuito de controle da temperatura do para-brisa Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com O elemento sensor em todos os para-brisas possui um resistor com o coeficiente térmico Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com positivo, e forma uma das pernas de um circuito de ponte. Quando a temperatura do para-brisas estiver acima do valor calibrado, o elemento sensor terá um valor de resistência maior do que o necessário para equilibrar a ponte. Isto diminui o fluxo de corrente através dos amplificadores, e os relés da unidade de controle são desenergizados. Quando a temperatura do para-brisa diminui, o valor da resistência dos elementos sensores também diminui e a corrente, através dos amplificadores, atingirá novamente suficiente magnitude para operar os relés na unidade de controle, energizando então, os aquecedores do para- brisas. Quando o interruptor de controle do aquecimento do para-brisa estiver selecionado para "Low", 115 volts, 400 Hz C.A. são supridos para os amplificadores, esquerdo e direito na unidade de controle e para os autotransformadores de aquecimento do para-brisa. Nestas condições, os transformadores fornecem 121 V.C.A. para a barra coletora de corrente de aquecimento do para-brisa através dos relés da unidade de controle. Os elementos sensores no para-brisa operam da mesma maneira como foi descrito para a operação de grande aquecimento ("High-heat"), para manter um adequado controle de temperatura no para-brisa. A unidade de controle de temperatura contém dois relés hermeticamente selados, e dois amplificadores Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com eletrônicos de três estágios, A unidade está calibrada para manter uma temperatura no para-brisa de 40º a 49º C. (105º a 120º F. O elemento sensor em cada painel do para-brisa possui um resistor com o coeficiente térmico positivo e forma uma das pernas de uma ponte que controla o fluxo da corrente nos amplificadores associados. O estágio final do amplificador controla o relé selado, o qual fornece corrente alternada para a barra coletora da corrente de aquecimento do para-brisa. Quando a temperatura do para-brisa estiver acima do valor calibrado, o elemento sensor terá um valor de resistência maior do que o necessário para equilibrar a ponte. Isto diminui o fluxo de corrente através dos amplificadores, e os relés da unidade de controle são desenergizados. Quando a temperatura do para-brisa diminui, o valor da resistência dos elementos sensores também diminui, e a corrente, através dos amplificadores, atinge suficiente magnitude para operar os relés na unidade de controle, energizando então o circuito. Existem vários problemas associados com os aquecedores elétricos de para- brisas. Eles incluem a delaminação, rachaduras centelhamento e descoloração. A delaminação (separação dos painéis), embora indesejável, não é estruturalmente prejudicial, desde que esteja dentro dos limites estabelecidos pelo fabricante da aeronave, e não esteja em uma área que afete as qualidades óticas do painel. Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com O centelhamento em um painel de para-brisas, usualmente indica que houve uma quebra da película condutora. Onde lascas ou diminutas rachaduras são formadas, na superfície dos painéis de vidro, simultâneas folgas na compressão da superfície e esforço de tensão no vidro altamente temperado, podem resultar em rachaduras nas bordas e ligeiras separações na película condutora. O centelhamento é produzido onde a corrente salta esta falha, particularmente onde essas rachaduras estão paralelas às barras da janela. Onde há centelhamentos, eles estão invariavelmente a certa distância de um local superaquecido, o qual, dependendo da sua severidade e localização, pode causar posterior dano ao painel. Centelhamento nas proximidades, de um elemento sensor de temperatura é um particular problema, pois ele pode prejudicar o sistema de controle do aquecimento. Para-brisas eletricamente aquecidos são transparentes para a transmissão direta da luz, mas eles têm uma cor distinta quando vistos pela luz refletida. A cor varia do azul-claro ao amarelo, ou rosa claro, dependendo do fabricante do painel da janela. Normalmente, a descoloração não é um problema, a menos que afete as qualidades óticas. Rachaduras no para-brisa são mais constantes no vidro externo onde os limpadores são indiretamente a causa desses problemas. Alguma areia presa na palheta do limpador pode converter-se em um eficiente cortador de vidro quando em movimento. Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com A melhor solução contra arranhões no para-brisa é a prevenção; limpar as palhetas do limpador de para-brisas tão frequentemente quanto possível. Incidentalmente os limpadores nunca deverão ser operados com o painel seco, porque isso aumenta as chances de danificar a superfície. Se a visibilidade não estiver sendo afetada, arranhões ou cortes nos painéis de vidro são permitidos, dentro das limitações previstas nos apropriados manuais de serviço ou de manutenção. A tentativa de aumentar a visibilidade por meio de polimento nos cortes e arranhões não é recomendável. Isto é por causa da imprevisível natureza das concentrações de esforço residual, que o vidro temperado adquiriu durante a fabricação. O vidro temperado é mais forte do que o vidro comum, devido ao esforço de compressão na superfície do vidro, o qual tem que ser superado antes que a falha possa ocorrer do esforço de tensão no seu interior. O polimento que remove uma apreciável camada da superfície pode destruir este equilíbrio do esforço interno, e pode até resultar em uma imediata falha do vidro. Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com A determinação da profundidade dos arranhões sempre tem causado algumas dificuldades. Um micrômetro ótico pode ser usado para esta finalidade. Ele é essencialmente um microscópio suportado por pequenas pernas, ao contrário do tipo familiar montado em uma base sólida. Quando focalizado em algum ponto, a distância focal da lente (distância da lente ao objeto) pode ser lida em uma escala micrométrica do instrumento. A profundidade de um arranhão ou fissura no painel do para-brisa, por exemplo, pode então ser determinada pela obtenção da distância focal para a superfície do vidro e para o fundo do arranhão ou fissura. A diferença entre essas duas leituras dará a profundidade do arranhão. O micrômetro ótico pode ser usado na superfície de painéis planos, convexos ou côncavos, estando eles instalados ou não na aeronave. Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com Sistemas de Degelo do Carburador e do Para-brisa Um sistema de degelo a álcool é previsto em algumas aeronaves para remover o gelo do para-brisa e do carburador. A figura 8-8 ilustra um sistema típico de um bimotor, no qual três bombas de degelo (uma para cada carburador e uma para o para-brisa) são usadas. O fluido, vindo do tanque de álcool, é controlado por uma válvula solenoide a qual é energizada quando alguma das bombas de álcool está ligada. O fluxo de álcool da válvula solenoide é filtrado e dirigido para as bombas e daí distribuído através de um sistema de tubulações para os carburadores e para-brisas. Figura 8-8 Sistema de degelo do carburados e do para-brisa Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com Interruptores de mola controlam a operação das bombas de álcool para o carburador. Quando os interruptores são colocados na posição "ON", as bombas de álcool são ligadas e a válvula de corte, operada a solenoide, é aberta. A operação da bomba de degelo do para-brisa e da válvula de corte do álcool, operada a solenoide, é controlada por um interruptor tipo reostato, localizado na estação do piloto. Quando o reostato, localizado na estação do piloto. Quando o reostato é movido para fora da posição "OFF", a válvula de corte é aberta, fazendo com que a bomba de álcool leve o fluido para o para-brisas na razão selecionada pelo reostato. Quando o reostato é retornado para a posição "OFF", a válvula de corte fecha e a bomba interrompe a operação. Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com Antigelo do Tubo Pitot Para evitar a formação de gelo sobre a abertura do tubo de pitot, está previsto um elemento de aquecimento elétrico embutido. Um interruptor localizado na cabine controla a energia para o aquecimento. Precisamos de cautela para checar o tubo de pitot no solo, porque o aquecedor não deve ser operado por longos períodos, a menos que a aeronave esteja em vôo. Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com Figura 8-9 Cabeça do tubo de pitot Os elementos de aquecimento deverão ser checados quanto ao funcionamento, para assegurar que a cabeça do pitot começa a aquecer, quando a energia elétrica é aplicada. Se um ohmímetro (medidor de carga) for instalado no circuito, a operação do aquecedor pode ser verificada pela indicação de consumo de corrente quando o aquecedor for ligado. Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com 1.3 AQUECEDORES DE DRENOS Aquecedores estão previstos para as linhas de dreno do lavatório, linhas de água, mastros de dreno e drenos de água servida, quando estão localizados em uma área que está sujeita a temperaturas de congelamento em voo. Os tipos de aquecedores usados são: tubos aquecidos integralmente, tiras, forro, remendos aquecedores que envolvem as linhas e gaxetas aquecedores (ver na figura 8-10). Nos circuitos aquecedores estão previstos termostatos onde for indesejável excessivo aquecido ou para reduzir o consumo. Os aquecedores têm uma baixa voltagem de saída e uma operação contínua não causará superaquecimento. Figura 8-10 Aquecedores típicos de linhas de água e de drenos Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com Licenciado para - 14Bis Aviação - 41636821000104 - Protegido por Eduzz.com