Basic Mathematics Exam 2020 PDF
Document Details
Uploaded by InsightfulQuantum8377
2020
RePt-NEET/AIIMS
Tags
Related
Summary
This is a basic mathematics exam paper from MAKNE PHYSICS CLASSES for 2020. The exam paper includes questions on trigonometry and algebra, and various calculus concepts.
Full Transcript
MAKNE PHYSICS CLASSES Class : Rept-NEET/AIIMS-2020 ( 6 to 8 am) Max. Marks : 180 Date : 07/07/2019 Time : 45 min. Basic Mathematics 01. Wha...
MAKNE PHYSICS CLASSES Class : Rept-NEET/AIIMS-2020 ( 6 to 8 am) Max. Marks : 180 Date : 07/07/2019 Time : 45 min. Basic Mathematics 01. What is the value of cos( 60 o ) d 3 07. ( x ) ...... 1 1 dx a) b) 2 2 a) 2x 2 b) 3x 2 1 3 c) 2x 3 d) 4x 3 c) d) 2 2 d 08. ( x ) ...... 02. What is the value of tan 210 o dx 1 1 1 a) 3 b) a) b) 3 2 x 2 x 1 1 x c) d) 1 c) d) 3 x 2 03. What is the value of sin 300 o d 09. ( ax 2 bx c) ...... 2 2 dx a) b) 3 3 a) ax b b) 2ax b c) ax 2 b d) 2ax b 3 3 c) d) 2 2 d 10. (2 x3 e x ) ...... 04. What is the value of cos 120 o dx 1 1 a) e x b) 6 x3 e x a) b) 2 2 c) 6 x 2 e x d) 4 x 2 e x 3 1 d c) d) 11. (sin x cos x) ....... 2 2 dx 05. What is the value of (v) sin(1485 o ) a) sin x cos x b) sin x cos x 1 1 c) cos x sin x d) sec x sin x a) b) 2 2 d 12. (sin x ex ) ....... dx 3 1 c) b) a) sin x x b) cos x x 2 2 06. If A 60 o then value of sin 2 A will be c) cos x e x d) cos x e x 3 1 d (a) (b) 13. (sin t 2 ) ....... 2 2 dt 1 1 a) cos t 2 b) 2 cos t 2 (c) (d) 3 2 c) 2t cos t 2 d) 2t sin t 2 Page - 1 d sint d) 5 x 4 3 x 2 2 x 1/ 2 7 14. ( e ) ....... dt 23. f(x) = cos x + sin x, Find f (/2) a) 1 b) 2 a) esin t.cos t b) ecos t.cos t c) 3 d) 4 c) ecost d) esin t Q. 24 to 27 Find the derivative of given function w.r.t. d corresponding independent variable. 15. dt sin(t ) ....... 24. y x 2 x 8 a) cos ( t ) b) cos ( t ) a) 2 x 1 b) 2 x 1 c) x 1 d) x 1 c) sin ( t ) d) cos ( t ) 25. s 5t 3 3t 5 3 a) 15 t 2 15 t 4 b) 15 t 15 t 4 16. If sin = then cos =.... 5 c) 15 t 2 15 t 4 d) 15 t 2 15 t a) 2/3 b) 5/3 c) 4/5 d) 3/2 26. y 5 sin x 3 a) 5cos x b) 4cos x 17. If sin = then cot =.... c) 2cos x d) cos x 5 a) 4/3 b) 3/4 27. y x 2 sin x c) 2/3 d) 3/2 a) 2 x cos x b) x cos x 3 c) x cos x d) 2 x cos x 18. If sin = then sec =.... 5 Q. 28 to 32 Find the first derivative & second derivative a) 4/5 b) 5/4 of given functions w.r.t. corresponding independent c) 2/3 d) 3/5 variable. dy 19. Find , when y = x5 + x4 + 7 28. y 6x 2 10x 5x 2 dx a) 12 x 10 10 x 3 , 12 30x4 a) 4 x 4 3 x 3 7 b) 5 x 4 4 x3 7 b) 12 x 10 10 x3 , 12 30x4 4 3 4 3 c) 5 x 4 x d) 5 x 4 x 7 c) x 10 10 x 3 , 12 x 4 dy d) x 10 10 x3 , 12 x 4 20. Find , when y = x2 + 4x–1/2 – 3x–2 dx 12 4 1 a) 2 x 2 2 x 3/ 2 6 x 2 b) 2 x 2 x 3/ 2 6 x 29. r 3 4 c) 2 x 2 x 3/2 6 x 3 d) 2 x 2 x1/ 2 6 x 3 a) 12 2 12 4 4 5 , 24 3 48 5 20 6 dy b) 12 2 12 4 4 5 , 24 3 48 5 20 6 21. Find , when y = x7/2 dx c) 12 1 12 4 4 5 , 24 2 48 5 20 6 7 5/ 2 5 9/ 2 a) 2 x b) 2 x d) 12 1 12 4 4 2 , 24 2 48 2 20 4 30. 3 z 7 7 z 3 21z 2 7 9/ 2 5 3/ 2 c) 2 x d) x a) 21 z 6 21 z 2 42 z , 126 z 5 42 z 42 2 b) 21 z 6 21 z 2 42 z ,126 z 5 42 z 42 dy 22. Find , when y = x5 + x3 + 4x1/2 + 7 dx c) 21 z 2 21 z 2 42 z ,126 z 4 42 z 42 a) 5 x 4 3 x 2 x1/2 d) 21 z 2 21 z 2 22 z ,126 z 4 52 z 32 b) 5 x 4 3 x 2 2 x 1/ 2 c) 5 x 4 3 x 2 2 x 1/ 2 7 Page - 2 31. y sin x cos x 40. Suppose that the radius r and surface area S = 4 π r2 a) cos x sin x, sin x cos x of a sphere are differentiable functions of t. Write an b) cos x sin x, sin x cos x ds dr equation that relates to. dt dt c) cos x sin , sin x cos x ds dr ds dr d) cos x sin , sin x cos x a) 6 r b) 8r dt dt dt dt 32. y nx e x ds dr ds dr c) 6 d) 8 1 x 1x 1 x 1 x dt dt dt dt a) x e , x 2 e b) x e , x 2 e 41. Particle’s position as a function of time is given by 1 x 1 x 1 x 1 x x t 2 4t 4 find the maximum value of position c) x 2 e , e d) x 2 e , e x x coordinate of particle. Q. 33 to 35 Find derivative of given functions w.r.t. the a) 4 b) 8 independent variable x. c) 12 d) 6 42. Find the maximum and minimum values of function 33. x sin x 2x 3 15 x 2 36 x 11 a) sin x x cos x b) sin x x cos x a) ymax = 39, ymin = 38 c) sin x cos x d) sin cos x b) ymax = 38, ymin = 39 34. y e x nx c) ymax = 18, ymin = 29 d) ymax = 29, ymin = 18 ex e a) e x nx b) e x nx dy x x 43. y 2u 3 & u 8 x 1, find dx ex e c) e x nx d) e nx dy 48 (8 x 1)2 dy 48(8 x 1) 2 x x a) b) dx dx 35. y sin x cos x dy dy 2 a) cos2 x sin2 x b) cos 2 x sin 2 x c) dx 48(8 x 1) d) dx 38 (8 x 1) c) cos x sin 2 x d) cos x sin x dy dy 44. y sin u & u 3x 1, find dx Q. 36 to 38 Find dx as a function of x a) 3cos(3x 1) b) cos(3x 1) 36. y (4 3x )9 a) 27(4 3x)8 b) 27(4 3x )8 c) cos(3x 1) d) 3 cos(3 x 1) c) 27(4 3x )8 d) 27(4 3x )6 x dy 45. y cos u & u , find 3 dx 37. y sin 5 x a) 5 cos 5 x b) 4cos 5x 1 x 1 x a) sin b) sin 3 3 3 3 c) 4cos 4x d) 2cos 4x 2 x 2 x 38. y 2 sin(x ) where w and f constants c) sin d) sin 3 3 3 2 a) 2 cos( x ) b) cos( x ) c) 2 cos( x ) d) cos( x ) 39. Suppose that the radius r and area A = π r2 of a circle ------------------------------------------------------------------- are differentiable functions of t. Write an equation that relates dA / dt to dr / dt. dA dr dA dr a) 2 r b) r dt dt dt dt dA dr dA dr c) d) dt dt dt dt Page - 3 MAKNE PHYSICS PHYSICSCLASSES CLASSES Basic Mathematics Rept-Physics Date : 07-07-19 Q.No. 1 2 3 4 5 6 7 8 Ans C B D A B A B A Q.No. 9 10 11 12 13 14 15 16 Ans B C C D C A B C Q.No. 17 18 19 20 21 22 23 24 Ans A B C C A B A B Q.No. 25 26 27 28 29 30 31 32 Ans C A D A A A A A Q.No. 33 34 35 36 37 38 39 40 Ans B C B B A C A B Q.No. 41 42 43 44 45 Ans B A A D B Page - 4