ELEN 30184 Module 1 Elements Of Power System Analysis PDF

Summary

This document is a set of lecture notes or course materials on Elements of Power System Analysis, specifically Module 1. It covers fundamental concepts in power systems engineering. The notes include diagrams and formulas relating to the module content.

Full Transcript

ELEN 30184 Module 1 Elements of Power System Analysis Symbols identifying different type of aluminum conductors are as follows: AAC all-aluminum conductors AAAC all-aluminum-alloy conductors...

ELEN 30184 Module 1 Elements of Power System Analysis Symbols identifying different type of aluminum conductors are as follows: AAC all-aluminum conductors AAAC all-aluminum-alloy conductors ACSR all-aluminum conductor, steel reinforced ACAR all conductor alloy reinforced RESISTANCE Symbols identifying different type of aluminum conductors are as follows: AAC all-aluminum conductors AAAC all-aluminum-alloy conductors ACSR all-aluminum conductor, steel reinforced ACAR all conductor alloy reinforced The most significant effect of resistance of transmission line conductors is the generation of copper loss in the line and IR type voltage drop which affects the regulation of the line. The DC resistance is given by the formula, ! 𝑅=𝜌 " π‘Žπ‘Ÿπ‘’π‘Ž 𝑅 βˆ’ π‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’, π‘œβ„Žπ‘šπ‘  𝜌 βˆ’ π‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘–π‘£π‘–π‘‘π‘¦, π‘œβ„Žπ‘š. 𝐿 βˆ’ π‘™π‘’π‘›π‘”π‘‘β„Ž 𝐴 βˆ’ 𝑒𝑛𝑖𝑑 π‘Žπ‘Ÿπ‘’π‘Ž π‘™π‘’π‘›π‘”π‘‘β„Ž The temperature dependance of resistance is given by the formula, 𝑅# = 𝑅$ 1 + 𝛼 𝑑# βˆ’ 𝑑$ 𝑅# π‘Žπ‘›π‘‘ 𝑅$ βˆ’ π‘Ÿπ‘’π‘ π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ π‘Žπ‘‘ π‘‘π‘’π‘šπ‘π‘’π‘Ÿπ‘Žπ‘‘π‘’π‘Ÿπ‘’ 𝑑# π‘Žπ‘›π‘‘ 𝑑$ π‘Ÿπ‘’π‘ π‘π‘’π‘π‘‘π‘–π‘£π‘’π‘™π‘¦ 𝛼 βˆ’ π‘‘π‘’π‘šπ‘π‘’π‘Ÿπ‘Žπ‘‘π‘’π‘Ÿπ‘’ π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘, 𝑐𝑒𝑙𝑠𝑖𝑒𝑠 %$ This is derive from, 𝑅# 𝑇 + 𝑑# = 𝑅$ 𝑇 + 𝑑$ 𝑇 βˆ’ π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ π‘“π‘œπ‘Ÿ π‘Ž π‘π‘’π‘Ÿπ‘‘π‘Žπ‘–π‘› π‘˜π‘–π‘›π‘‘ π‘œπ‘“ π‘π‘Žπ‘π‘™π‘’, 𝑐𝑒𝑙𝑠𝑖𝑒𝑠 INDUCTANCE The inductance of a transmission line is calculated as flux linkages per ampere and if permeability is constant, the sinusoidal current produces sinusoidal varying flux in phase in current as shown by the equation, πœ† 𝐿= 𝐼 𝑑 π‘€β„Žπ‘’π‘Ÿπ‘’: 𝐿 βˆ’ π‘–π‘›π‘‘π‘’π‘π‘‘π‘Žπ‘›π‘π‘’, β„Žπ‘’π‘›π‘Ÿπ‘¦ πœ† βˆ’ 𝑓𝑙𝑒π‘₯ π‘™π‘–π‘›π‘˜π‘Žπ‘”π‘’π‘ , π‘Šπ‘. 𝐼 βˆ’ π‘π‘’π‘Ÿπ‘Ÿπ‘’π‘›π‘‘, π‘Žπ‘šπ‘π‘’π‘Ÿπ‘’ π‘š The inductance of a transmission line is calculated as flux linkages per ampere and if permeability is constant, the sinusoidal current produces sinusoidal varying flux in phase in current as shown by the equation, πœ† 𝐿= 𝐼 𝑑 π‘€β„Žπ‘’π‘Ÿπ‘’: 𝐿 βˆ’ π‘–π‘›π‘‘π‘’π‘π‘‘π‘Žπ‘›π‘π‘’, β„Žπ‘’π‘›π‘Ÿπ‘¦ πœ† βˆ’ 𝑓𝑙𝑒π‘₯ π‘™π‘–π‘›π‘˜π‘Žπ‘”π‘’π‘ , π‘Šπ‘. 𝐼 βˆ’ π‘π‘’π‘Ÿπ‘Ÿπ‘’π‘›π‘‘, π‘Žπ‘šπ‘π‘’π‘Ÿπ‘’ π‘š In order to obtain an accurate value for inductance of a transmission line, consider the flux inside each conductor as well as the external flux as shown in the figure below, By Ampere’s law, the magnetomotive force (mmf) in ampere-turns around any closed path is equal to the net current in amperes enclosed by the path as shown by equation, π‘šπ‘šπ‘“ = H 𝐻 𝑑𝑠 = 𝐼 𝐴𝑑 𝐴𝑑 π‘€β„Žπ‘’π‘Ÿπ‘’: 𝐻 βˆ’ π‘šπ‘Žπ‘”π‘›π‘’π‘‘π‘–π‘ 𝑓𝑖𝑒𝑙𝑑 𝑖𝑛𝑑𝑒𝑛𝑠𝑖𝑑𝑦, 𝑠 βˆ’ π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ π‘Žπ‘™π‘œπ‘›π‘” π‘π‘Žπ‘‘β„Ž, π‘š. 𝐼 βˆ’ π‘π‘’π‘Ÿπ‘Ÿπ‘’π‘›π‘‘ π‘’π‘›π‘π‘™π‘œπ‘ π‘’π‘‘, 𝐴 π‘š #( #( 𝐼& = H 𝐻& 𝑑𝑠 = 𝐻& H 𝑑𝑠 = 𝐻& π‘₯ 2πœ‹ βˆ’ 0 = 2πœ‹π‘₯𝐻& ' ' By Ampere’s law, the magnetomotive force (mmf) in ampere-turns around any closed path is equal to the net current in amperes enclosed by the path as shown by equation, π‘šπ‘šπ‘“ = $ 𝐻 𝑑𝑠 = 𝐼 𝐴𝑑 𝐴𝑑 π‘€β„Žπ‘’π‘Ÿπ‘’: 𝐻 βˆ’ π‘šπ‘Žπ‘”π‘›π‘’π‘‘π‘–π‘ 𝑓𝑖𝑒𝑙𝑑 𝑖𝑛𝑑𝑒𝑛𝑠𝑖𝑑𝑦, 𝑠 βˆ’ π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ π‘Žπ‘™π‘œπ‘›π‘” π‘π‘Žπ‘‘β„Ž, π‘š. 𝐼 βˆ’ π‘π‘’π‘Ÿπ‘Ÿπ‘’π‘›π‘‘ π‘’π‘›π‘π‘™π‘œπ‘ π‘’π‘‘, 𝐴 π‘š #$ #$ 𝐼! = $ 𝐻! 𝑑𝑠 = 𝐻! $ 𝑑𝑠 = 𝐻! π‘₯ 2πœ‹ βˆ’ 0 = 2πœ‹π‘₯𝐻! " " πœ‹π‘Ÿ # 𝑠𝑖𝑛𝑐𝑒, 𝐼! = # 𝐼 πœ‹π‘₯ πœ‹π‘Ÿ # π‘₯ π‘‘β„Žπ‘’π‘›, 𝐼 = 2πœ‹π‘₯𝐻! βˆ’βˆ’β†’ 𝐻! = 𝐼 πœ‹π‘₯ # 2πœ‹π‘Ÿ # πœ‡π‘₯ 𝐡! = πœ‡π»! = 𝐼 2πœ‹π‘Ÿ # π‘Šπ‘ π‘€β„Žπ‘’π‘Ÿπ‘’: 𝐡! βˆ’ π‘šπ‘Žπ‘”π‘›π‘’π‘‘π‘–π‘ 𝑓𝑖𝑒𝑙𝑑 𝑑𝑒𝑛𝑠𝑖𝑑𝑦, π‘š# πœ‡ βˆ’ π‘π‘’π‘Ÿπ‘šπ‘’π‘Žπ‘π‘–π‘™π‘–π‘‘π‘¦, (π‘€π‘–π‘‘β„Ž π‘Ž π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 4πœ‹ π‘₯ 10%& π‘Žπ‘‘ π‘“π‘Ÿπ‘’π‘’ π‘ π‘π‘Žπ‘π‘’ π‘Žπ‘‘ 𝑆𝐼 𝑒𝑛𝑖𝑑 π‘œπ‘“ 1) Considering a tubular element of thickness β€œx” , the flux is Bx times the cross sectional area of the element normal to the flux lines. The flux per meter length is given by, πœ‡π‘₯𝐼 π‘‘πœ™ = 𝑑π‘₯ 2πœ‹π‘Ÿ # πœ‹π‘₯ # πœ‹π‘₯ # πœ‡π‘₯𝐼 πΌπœ‡π‘₯ ) π‘‘πœ† = # π‘‘πœ™ = ( # ) 𝑑π‘₯ = 𝑑π‘₯ πœ‹π‘Ÿ πœ‹π‘Ÿ 2πœ‹π‘Ÿ # 2πœ‹π‘Ÿ *.. πΌπœ‡π‘₯ ) πΌπœ‡ ) 𝑑π‘₯ = π‘Ÿ * 0 * πΌπœ‡ πΌπœ‡ πœ†+,- =H * 𝑑π‘₯ = H π‘₯ βˆ’ = ' 2πœ‹π‘Ÿ 2πœ‹π‘Ÿ * ' 4 4 2πœ‹π‘Ÿ * 8πœ‹ π‘Šπ‘ π‘€β„Žπ‘’π‘Ÿπ‘’: πœ™ βˆ’ 𝑓𝑙𝑒π‘₯ π‘π‘’π‘Ÿ π‘šπ‘’π‘‘π‘’π‘Ÿ π‘™π‘’π‘›π‘”π‘‘β„Ž, π‘š Considering a tubular element of thickness β€œx” , the flux is Bx times the cross sectional area of the element normal to the flux lines. The flux per meter length is given by, πœ‡π‘₯𝐼 π‘‘πœ™ = 𝑑π‘₯ 2πœ‹π‘Ÿ # πœ‹π‘₯ # πœ‹π‘₯ # πœ‡π‘₯𝐼 πΌπœ‡π‘₯ ' π‘‘πœ† = # π‘‘πœ™ = ( # ) 𝑑π‘₯ = 𝑑π‘₯ πœ‹π‘Ÿ πœ‹π‘Ÿ 2πœ‹π‘Ÿ # 2πœ‹π‘Ÿ ( , , πΌπœ‡π‘₯ ' πΌπœ‡ ' π‘Ÿ ( 0( πΌπœ‡ πΌπœ‡ πœ†)*+ =$ ( 𝑑π‘₯ = $ π‘₯ 𝑑π‘₯ = βˆ’ = " 2πœ‹π‘Ÿ 2πœ‹π‘Ÿ ( " 4 4 2πœ‹π‘Ÿ ( 8πœ‹ π‘Šπ‘ π‘€β„Žπ‘’π‘Ÿπ‘’: πœ™ βˆ’ 𝑓𝑙𝑒π‘₯ π‘π‘’π‘Ÿ π‘šπ‘’π‘‘π‘’π‘Ÿ π‘™π‘’π‘›π‘”π‘‘β„Ž, π‘š For relative permeability of 1, assuming a free space, 𝐼(4πœ‹ π‘₯ 10%& ) 𝐼 πœ†)*+ = = π‘₯10%& 8πœ‹ 2 𝐼 πœ†)*+ 2 π‘₯10%& 1 𝐻 𝐿)*+ = = = π‘₯10%& 𝐼 𝐼 2 π‘š Consider a conductor with external points P1 and P2 as shown by the figure below, Consider a conductor with external points P1 and P2 as shown by the figure below, Recall, the mmf around the element and the magnetic flux density is given by, 𝐼 𝐼 = 2πœ‹π‘₯𝐻! βˆ’βˆ’β†’ 𝐻! = 2πœ‹π‘₯ 𝐼 πœ‡πΌ 𝐡! = πœ‡π»! = πœ‡( )= 2πœ‹π‘₯ 2πœ‹π‘₯ Consider the distance D1 and D2 which is the distance of points P1 and P2 from the center of the conductor respectively, so between these two points the flux linkages is given by, /" πœ‡πΌ πœ‡πΌ /" 𝑑π‘₯ πœ‡πΌ 𝐷# πœ†$# = H 𝑑π‘₯ = H = ln /! 2πœ‹π‘₯ 2πœ‹ /! π‘₯ 2πœ‹ 𝐷$ For a relative permeability of 1, 𝐷# πœ†$# = 2π‘₯10%0 𝐼 ln 𝐷$ Consider the distance D1 and D2 which is the distance of points P1 and P2 from the center of the conductor respectively, so between these two points the flux linkages is given by, /" πœ‡πΌ πœ‡πΌ /" 𝑑π‘₯ πœ‡πΌ 𝐷# πœ†$# = H 𝑑π‘₯ = H = ln /! 2πœ‹π‘₯ 2πœ‹ /! π‘₯ 2πœ‹ 𝐷$ For a relative permeability of 1, 𝐷# πœ†$# = 2π‘₯10%0 𝐼 ln 𝐷$ The inductance due to flux only between 1 and 2, 𝐷# 𝐿$# = 2π‘₯10%0 ln 𝐷$ Consider a two wire circuit with radius r1 and r2 separated by distance D from each other, one is return circuit for another vice versa, Replacing D2 with D and D1 with r1, to determine the inductance of the circuit due to one conductor only will yield, 1 𝐿+,- = π‘₯10%0 2 %0 𝐷 𝐿# = 2π‘₯10 ln π‘Ÿ$ 1 𝐷 𝐿$ = 𝐿+,- + 𝐿# = + 2 ln π‘₯10%0 2 π‘Ÿ$ Consider a two wire circuit with radius r1 and r2 separated by distance D from each other, one is return circuit for another vice versa, Replacing D2 with D and D1 with r1, to determine the inductance of the circuit due to one conductor only will yield, 1 𝐿#$% = π‘₯10&' 2 𝐷 𝐿( = 2π‘₯10&' ln π‘Ÿ) 1 𝐷 𝐿) = 𝐿#$% + 𝐿( = + 2 ln π‘₯10&' 2 π‘Ÿ) u Dividing both sides by 2 will yield, u 𝐿) 1 1 𝐷 = ( ) + 2 ln π‘₯10&' 2 2 2 π‘Ÿ) $ 1 𝑠𝑖𝑛𝑐𝑒 ln 𝑒* = , π‘‘β„Žπ‘’π‘› 4 $ 𝐷 𝐿$ = 2π‘₯10%0 ln 𝑒* + ln π‘Ÿ$ 𝐷 𝐷 𝐿$ = 2π‘₯10%0 ln $ = 2π‘₯10%0 ln % π‘Ÿ$ β€² 𝑒 * π‘Ÿ$ 𝐷 π‘†π‘–π‘šπ‘–π‘™π‘Žπ‘Ÿπ‘™π‘¦ π‘“π‘œπ‘Ÿ π‘π‘œπ‘›π‘‘π‘’π‘π‘‘π‘œπ‘Ÿ 2, 𝐿# = 2π‘₯10%0 ln π‘Ÿ# β€² $ 1 𝑠𝑖𝑛𝑐𝑒 ln 𝑒* = , π‘‘β„Žπ‘’π‘› 4 $ 𝐷 𝐿$ = 2π‘₯10%0 ln 𝑒* + ln π‘Ÿ$ 𝐷 𝐷 𝐿$ = 2π‘₯10%0 ln $ = 2π‘₯10%0 ln % π‘Ÿ$ β€² 𝑒 * π‘Ÿ$ 𝐷 π‘†π‘–π‘šπ‘–π‘™π‘Žπ‘Ÿπ‘™π‘¦ π‘“π‘œπ‘Ÿ π‘π‘œπ‘›π‘‘π‘’π‘π‘‘π‘œπ‘Ÿ 2, 𝐿# = 2π‘₯10%0 ln π‘Ÿ# β€² Thus, for the complete circuit, 𝐷 𝐷 𝐷 𝐿 = 𝐿$ + 𝐿# = 2π‘₯10%0 ln + 2π‘₯10%0 ln = 4π‘₯10%0 ln π‘Ÿ$ β€² π‘Ÿ# β€² π‘Ÿ$ β€²π‘Ÿ# β€² If the radius is equal for both of the conductor, 𝐷 𝐿 = 4π‘₯10%0 ln π‘Ÿβ€² π‘€β„Žπ‘’π‘Ÿπ‘’: 𝐷 βˆ’ π‘šπ‘’π‘‘π‘’π‘Žπ‘™ πΊπ‘’π‘œπ‘šπ‘’π‘‘π‘Ÿπ‘–π‘ π‘€π‘’π‘Žπ‘› π·π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ 𝐺𝑀𝐷 𝑏𝑒𝑑𝑀𝑒𝑒𝑛 π‘‘π‘€π‘œ π‘π‘œπ‘›π‘‘π‘’π‘π‘‘π‘œπ‘Ÿ π‘Ÿ 1 βˆ’ πΊπ‘’π‘œπ‘šπ‘’π‘‘π‘Ÿπ‘–π‘ π‘€π‘’π‘Žπ‘› π‘…π‘Žπ‘‘π‘–π‘’π‘  𝐺𝑀𝑅 π‘œπ‘Ÿ 𝑠𝑒𝑙𝑓 𝐺𝑀𝐷 π‘œπ‘“ π‘‘β„Žπ‘’ π‘π‘œπ‘›π‘‘π‘’π‘π‘‘π‘œπ‘Ÿ Consider a group of conductors where the sum of the currents is zero as shown by the figure below, The flux linkages of conductor 1 due to I1 is given by, 𝐼$ 𝐷$2 𝐷$2 πœ†$2$ = + 2𝐼$ ln π‘₯10%0 = 2π‘₯10%0 𝐼$ ln 1 2 π‘Ÿ$ π‘Ÿ$ Consider a group of conductors where the sum of the currents is zero as shown by the figure below, The flux linkages of conductor 1 due to I1 is given by, 𝐼$ 𝐷$2 𝐷$2 πœ†$2$ = + 2𝐼$ ln π‘₯10%0 = 2π‘₯10%0 𝐼$ ln 1 2 π‘Ÿ$ π‘Ÿ$ The flux linkages with conductor 1 due to I2 but excluding flux beyond point P is given by, 𝐷#2 πœ†$2# = 2π‘₯10%0 𝐼# ln 𝐷$# Consider a group of conductors where the sum of the currents is zero as shown by the figure below, The flux linkages of conductor 1 due to I1 is given by, 𝐼- 𝐷-. 𝐷-. πœ†-.- = + 2𝐼- ln π‘₯10%& = 2π‘₯10%& 𝐼- ln / 2 π‘Ÿ- π‘Ÿ- The flux linkages with conductor 1 due to I2 but excluding flux beyond point P is given by, 𝐷#. πœ†-.# = 2π‘₯10%& 𝐼# ln 𝐷-# Expanding, 𝐷-. 𝐷#. 𝐷'. 𝐷*. πœ†-. = 2π‘₯10%& (𝐼- ln + 𝐼# ln + 𝐼' ln + β‹― + 𝐼* ln ) π‘Ÿ-/ 𝐷-# 𝐷-' 𝐷-* 1 1 1 = 2π‘₯10%& (𝐼- ln / + 𝐼# ln + 𝐼' ln + β‹― + 𝐼- ln 𝐷-0 + 𝐼# ln 𝐷#0 + 𝐼' ln 𝐷'0 + β‹― + 𝐼* ln 𝐷*. ) π‘Ÿ- 𝐷-# 𝐷-' Since the sum of all the currents is zero, 𝐼$ + 𝐼# + 𝐼) + β‹― + 𝐼, = 0 𝐼, = βˆ’(𝐼$ + 𝐼# + 𝐼) + β‹― + 𝐼,%$ ) Since the sum of all the currents is zero, 𝐼$ + 𝐼# + 𝐼) + β‹― + 𝐼, = 0 𝐼, = βˆ’(𝐼$ + 𝐼# + 𝐼) + β‹― + 𝐼,%$ ) Substituting In in equation , 1 1 1 1 𝐷$3 𝐷#3 𝐷)3 𝐷(,%$)3 πœ†$2 = 2π‘₯10%0 (𝐼$ ln 1 + 𝐼# ln + 𝐼) ln + β‹― + 𝐼, ln + 𝐼$ ln + 𝐼# ln + 𝐼) ln + β‹― + 𝐼,%$ ln ) π‘Ÿ$ 𝐷$# 𝐷$) 𝐷$, 𝐷,3 𝐷,3 𝐷,3 𝐷,3 1 1 1 1 πœ†$ = 2π‘₯10%0 (𝐼$ ln + 𝐼# ln + 𝐼) ln + β‹― + 𝐼, ln ) π‘Ÿ$1 𝐷$# 𝐷$) 𝐷$, Consider a single phase line with composite conductors X and Y, Using equation to filament a of conductor X, we obtain, 𝐼 1 1 1 1 𝐼 1 1 1 1 πœ†6 = 2π‘₯10%0 ln + ln + ln + β‹― + 𝐼6 ln βˆ’ 2π‘₯10 %0 ln + ln + ln … + ln 𝑛 π‘Ÿ61 𝐷6# 𝐷6) 𝐷6, π‘š 𝐷661 𝐷671 𝐷681 𝐷69 Using equation to filament a of conductor X, we obtain, 𝐼 1 1 1 1 𝐼 1 1 1 1 πœ†6 = 2π‘₯10%0 ln + ln + ln + β‹― + 𝐼6 ln βˆ’ 2π‘₯10 %0 ln + ln + ln … + ln 𝑛 π‘Ÿ61 𝐷6# 𝐷6) 𝐷6, π‘š 𝐷661 𝐷671 𝐷681 𝐷69 * 𝐷66+ 𝐷67+ 𝐷68 + … 𝐷69 πœ†6 = 2π‘₯10%0 𝐼 ln , π‘Ÿ61 𝐷67 𝐷68 … 𝐷6, * πœ†6 𝐷66+ 𝐷67+ 𝐷68 + … 𝐷69 𝐿6 = = 2𝑛π‘₯10%0 𝐼 ln , 1 π‘Ÿ61 𝐷67 𝐷68 … 𝐷6, 𝑛 * πœ†7 𝐷76+ 𝐷77+ 𝐷78 + … 𝐷79 𝐿7 = = 2𝑛π‘₯10%0 𝐼 ln 1 , π‘Ÿ71 𝐷76 𝐷78 … 𝐷7, 𝑛 If all the filaments have the same inductance, the inductance of the conductor would be 1/n times the inductance of one filament. The average inductance of a given filaments of conductors is given by is given by, 𝐿6 + 𝐿7 + 𝐿8 + β‹― + 𝐿, 𝐿6: = 𝑛 If all the filaments have the same inductance, the inductance of the conductor would be 1/n times the inductance of one filament. The average inductance of a given filaments of conductors is given by is given by, 𝐿6 + 𝐿7 + 𝐿8 + β‹― + 𝐿, 𝐿6: = 𝑛 In this case, all filaments have different inductances, the inductance of conductor X is given by, 𝐿6: 𝐿6 + 𝐿7 + 𝐿8 + β‹― + 𝐿, 𝐿6: = = 𝑛 𝑛# If all the filaments have the same inductance, the inductance of the conductor would be 1/n times the inductance of one filament. The average inductance of a given filaments of conductors is given by is given by, 𝐿6 + 𝐿7 + 𝐿8 + β‹― + 𝐿, 𝐿6: = 𝑛 In this case, all filaments have different inductances, the inductance of conductor X is given by, 𝐿6: 𝐿6 + 𝐿7 + 𝐿8 + β‹― + 𝐿, 𝐿6: = = 𝑛 𝑛# Substituting the logarithmic expression for inductance of each filament, *, (𝐷66+ 𝐷67+ 𝐷68 + … 𝐷69 )(𝐷76+ 𝐷77+ 𝐷78 + … 𝐷79 ) 𝐿& = 2π‘₯10%0 ln , π‘Ÿ71 𝐷76 𝐷78 … 𝐷7, Let Dm be the GMD and Ds be the GMR, 𝐷9 𝐿& = 2π‘₯10%0 ln 𝐷; Let Dm be the GMD and Ds be the GMR, 𝐷9 𝐿& = 2π‘₯10%0 ln 𝐷; Thus, the inductance of the line is, 𝐿 = 𝐿& + 𝐿< Let Dm be the GMD and Ds be the GMR, 𝐷9 𝐿& = 2π‘₯10%0 ln 𝐷; Thus, the inductance of the line is, 𝐿 = 𝐿& + 𝐿< Thus, the reactive inductance is given by, 𝐷9 𝐷9 𝑋= = 2πœ‹π‘“πΏ& = 2πœ‹π‘“ 2π‘₯10%0 ln = 4πœ‹π‘“π‘₯10%0 𝑓 ln π‘œβ„Žπ‘š/π‘š 𝐷; 𝐷; 𝐷9 1609 π‘š 𝐷9 𝑋= = 4πœ‹π‘“π‘₯10%0 𝑓 ln π‘₯ = 2.022π‘₯10%) 𝑓 ln π‘œβ„Žπ‘š/π‘šπ‘– 𝐷; 1 π‘šπ‘–π‘™π‘’ 𝐷; Assuming an equilateral spaced conductor given by the figure below and a balanced three phase phasor, the inductance is given by, Assuming an equilateral spaced conductor given by the figure below and a balanced three phase phasor, the inductance is given by, Since Ia=-Ib-Ic, %0 1 1 %0 𝐷 πœ†6 = 2π‘₯10 𝐼6 ln βˆ’ 𝐼6 ln = 2π‘₯10 𝐼6 ln 𝐷; 𝐷 𝐷; %0 𝐷 𝐿6 = 2π‘₯10 𝐼6 ln 𝐷; When the conductors of a three phase line is unsymmetrical, the flux linkages of each phase are not the same and thus, causing an unbalanced circuit. When the conductors of a three phase line is unsymmetrical, the flux linkages of each phase are not the same and thus, causing an unbalanced circuit. Thus, the inductance for this given configuration is given by, 𝐷>? 𝐿6 = 2 π‘₯ 10%0 ln 𝐷; - 𝑖𝑛 π‘€β„Žπ‘–π‘β„Ž 𝐷>? = 𝐷$# 𝐷#) 𝐷)$ πœ‡' 𝐷>? 1 𝐷>? 𝐿= (1 + 4 ln ) = 2 + ln π‘₯10%0 8πœ‹ 𝐷; 4 𝐷; CAPACITANCE If a long, straight cylindrical conductor lies in a uniform medium such as air and is isolated from other charges so that the charge is uniformly distributed around is periphery, the flux is radial as shown in an isolated conductor below. CAPACITANCE If a long, straight cylindrical conductor lies in a uniform medium such as air and is isolated from other charges so that the charge is uniformly distributed around is periphery, the flux is radial as shown in an isolated conductor below. The electric flux density is given by, 1 𝐢 𝐷@ = 2πœ‹π‘₯ π‘š# π‘π‘œπ‘’π‘™π‘’π‘šπ‘π‘  π‘€β„Žπ‘’π‘Ÿπ‘’: π‘ž βˆ’ π‘β„Žπ‘Žπ‘Ÿπ‘”π‘’, π‘₯ βˆ’ π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’, π‘šπ‘’π‘‘π‘’π‘Ÿ π‘šπ‘’π‘‘π‘’π‘Ÿ The electric field density is given by, π‘ž 𝑉 𝐸= 2πœ‹π‘₯π‘˜ π‘š 𝐹 π‘€β„Žπ‘’π‘Ÿπ‘’: π‘˜ βˆ’ π‘π‘’π‘Ÿπ‘šπ‘–π‘‘π‘‘π‘–π‘£π‘–π‘‘π‘¦, π‘“π‘œπ‘Ÿ π‘“π‘Ÿπ‘’π‘’ π‘ π‘π‘Žπ‘π‘’, 8.85 π‘₯ 10%$# π‘š The electric field density is given by, π‘ž 𝑉 𝐸= 2πœ‹π‘₯π‘˜ π‘š 𝐹 π‘€β„Žπ‘’π‘Ÿπ‘’: π‘˜ βˆ’ π‘π‘’π‘Ÿπ‘šπ‘–π‘‘π‘‘π‘–π‘£π‘–π‘‘π‘¦, π‘“π‘œπ‘Ÿ π‘“π‘Ÿπ‘’π‘’ π‘ π‘π‘Žπ‘π‘’, 8.85 π‘₯ 10%$# π‘š Consider a long, straight wire carrying a positive charge of q C/m with points P1 and P2 are located at distances D1 and D2 meters respectively, as shown in the figure below, Thus, the instantaneous voltage drop between P1 and P2 is, /" /" π‘ž π‘ž 𝐷# 𝑣$# = H 𝐸 𝑑π‘₯ = H 𝑑π‘₯ = ln 𝑉 /! /! 2πœ‹π‘₯π‘˜ 2πœ‹π‘₯π‘˜ 𝐷$ π‘€β„Žπ‘’π‘Ÿπ‘’: 𝑣$# βˆ’ π‘–π‘›π‘ π‘‘π‘Žπ‘›π‘‘π‘’π‘œπ‘’π‘  π‘£π‘œπ‘™π‘‘π‘Žπ‘”π‘’ π‘‘π‘Ÿπ‘œπ‘ 𝑏𝑒𝑑𝑀𝑒𝑒𝑛 𝑃$ π‘Žπ‘›π‘‘ 𝑃# , π‘£π‘œπ‘™π‘‘π‘  Thus, the instantaneous voltage drop between P1 and P2 is, /" /" π‘ž π‘ž 𝐷# 𝑣$# = H 𝐸 𝑑π‘₯ = H 𝑑π‘₯ = ln 𝑉 /! /! 2πœ‹π‘₯π‘˜ 2πœ‹π‘₯π‘˜ 𝐷$ π‘€β„Žπ‘’π‘Ÿπ‘’: 𝑣$# βˆ’ π‘–π‘›π‘ π‘‘π‘Žπ‘›π‘‘π‘’π‘œπ‘’π‘  π‘£π‘œπ‘™π‘‘π‘Žπ‘”π‘’ π‘‘π‘Ÿπ‘œπ‘ 𝑏𝑒𝑑𝑀𝑒𝑒𝑛 𝑃$ π‘Žπ‘›π‘‘ 𝑃# , π‘£π‘œπ‘™π‘‘π‘  The capacitance per unit length of the unit length, π‘ž 𝐹 𝐢= 𝑣 π‘š Consider a single phase two wire as shown in the figure, Consider a single phase two wire as shown in the figure, The potential difference between the two conductors is given by, π‘ž6 𝐷 π‘ž6 π‘Ÿ7 𝑉67 = ln + ln 2πœ‹π‘˜ π‘Ÿ6 2πœ‹π‘˜ 𝐷 Since qa+qb=0 for a two wire line, π‘ž6 𝐷 π‘Ÿ7 π‘ž6 𝐷# 𝑉67 = ln βˆ’ ln = (ln ) 2πœ‹π‘˜ π‘Ÿ6 𝐷 2πœ‹π‘˜ π‘Ÿ6 π‘Ÿ7 π‘ž6 2πœ‹π‘˜ 𝐢67 = = 𝑉67 𝐷# ln( ) π‘Ÿ6 π‘Ÿ7 Consider a single phase two wire as shown in the figure, The potential difference between the two conductors is given by, π‘ž. 𝐷 π‘ž. π‘Ÿ/ 𝑉./ = ln + ln 2πœ‹π‘˜ π‘Ÿ. 2πœ‹π‘˜ 𝐷 Since qa+qb=0 for a two wire line, π‘ž. 𝐷 π‘Ÿ/ π‘ž. 𝐷( 𝑉./ = ln βˆ’ ln = (ln ) 2πœ‹π‘˜ π‘Ÿ. 𝐷 2πœ‹π‘˜ π‘Ÿ. π‘Ÿ/ π‘ž. 2πœ‹π‘˜ 𝐢./ = = 𝑉./ 𝐷( ln(π‘Ÿ π‘Ÿ ). / If ra=rb=r, πœ‹π‘˜ 𝐢./ = 𝐷 ln( π‘Ÿ ) If tap by a transformer having a grounded center tap, the potential difference between each conductor is halved which gives the equation which is shown in the figure, ?0 #(A D 𝐢, = 𝐢6, = 𝐢7, = 102 = 3 π‘‘π‘œ π‘›π‘’π‘’π‘‘π‘Ÿπ‘Žπ‘™ BC( ) 9 " 4 π‘€β„Žπ‘’π‘Ÿπ‘’: π‘Ÿ βˆ’ π‘Žπ‘π‘‘π‘’π‘Žπ‘™ π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘ , π‘šπ‘’π‘‘π‘’π‘Ÿ If tap by a transformer having a grounded center tap, the potential difference between each conductor is halved which gives the equation which is shown in the figure, ?0 #(A D 𝐢, = 𝐢6, = 𝐢7, = 102 = 3 π‘‘π‘œ π‘›π‘’π‘’π‘‘π‘Ÿπ‘Žπ‘™ BC( ) 9 " 4 π‘€β„Žπ‘’π‘Ÿπ‘’: π‘Ÿ βˆ’ π‘Žπ‘π‘‘π‘’π‘Žπ‘™ π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘ , π‘šπ‘’π‘‘π‘’π‘Ÿ The capacitive reactance is given by (at free space), 1 2.862 E 𝐷 π‘₯8 = = π‘₯ 10 ln π‘œβ„Žπ‘š. π‘šπ‘’π‘‘π‘’π‘Ÿ π‘‘π‘œ π‘›π‘’π‘’π‘‘π‘Ÿπ‘Žπ‘™ 2πœ‹π‘“πΆ 𝑓 π‘Ÿ 2.862 𝐷 1 π‘šπ‘–π‘™π‘’ 1.779 𝐷 π‘₯8 = π‘₯ 10E ln π‘œβ„Žπ‘š. π‘šπ‘’π‘‘π‘’π‘Ÿ π‘₯ = π‘₯10F ln π‘œβ„Žπ‘š. π‘šπ‘–π‘™π‘’ π‘‘π‘œ π‘›π‘’π‘’π‘‘π‘Ÿπ‘Žπ‘™ 𝑓 π‘Ÿ 1609 π‘šπ‘’π‘‘π‘’π‘Ÿ 𝑓 π‘Ÿ

Use Quizgecko on...
Browser
Browser