AP Statistics Chapter 5 - Probability Notes PDF

Summary

These notes cover the basics of probability, including simulations, sample spaces, probability models, and rules for calculating probabilities, such as the general addition rule and conditional probability. The notes are useful for students studying AP Statistics.

Full Transcript

AP Statistics Chapter 5 – Probability: What are the Chances? 5.1: Randomness, Probability and Simulation Probability The probability of any outcome of a chance process is a number between 0 and 1 that describes the proportion of times the outcome would occur in a very long series of repetitions....

AP Statistics Chapter 5 – Probability: What are the Chances? 5.1: Randomness, Probability and Simulation Probability The probability of any outcome of a chance process is a number between 0 and 1 that describes the proportion of times the outcome would occur in a very long series of repetitions. Simulation The imitation of chance behavior, based on a model that accurately reflects the situation, is called a simulation. Performing of a Simulation – The 4-Step Process 1. State: Ask a question of interest about some chance process. 2. Plan: Describe how to use a chance device to imitate one repetition of the process. Tell what you will record at the end of each repetition. 3. Do: Perform many repetitions of the simulation. 4. Conclude: Use the results of your simulation to answer the question of interest. 5.2: Probability Rules Sample Space The sample space S of a chance process is the set of all possible outcomes. Probability Models Descriptions of chance behavior contain two parts: A probability model is a description of some chance process that consists of two parts: a sample space S and a probability for each outcome. For example: When a fair 6-sided die is rolled, the Sample Space is S = {1, 2, 3, ,4,5, 6}. The probability for a fair die would include the probabilities of these outcomes, which are all the same. Outcome 1 2 3 4 5 6 Probability 1/6 1/6 1/6 1/6 1/6 1/6 Event An event is any collection of outcomes from some chance process. That is, an event is a subset of the sample space. Events are usually designated by capital letters, like A, B, C, and so on. For example: For the probability model above we might define event A = die roll is odd. The elements of the sample space S that fits this event are {1, 3, 5}. The probability of the event A, written as P(A) is the 3/6 or ½. So we would write P(A) = 0.5, in decimal form. AP Statistics – Chapter 5 Notes: Probability: What are the Chances? Page 1 of 3 The Basic Rules of Probability For any event A, 0 ≤ P(A) ≤ 1. If S is the sample space in a probability model, P(S) = 1. In the case of equally likely outcomes, number of outcomes corresponding to event A P( A)  total number of outcomes in sample space Complement rule: P(A ) = 1 – P(A) C Addition rule for mutually exclusive events: If A and B are mutually exclusive, P(A or B) = P(A) + P(B). Also be familiar with the notation: 𝑷(𝑨 ∪ 𝑩). Mutually Exclusive Events Two events A and B are mutually exclusive (or disjoint) if they have no outcomes in common and so can never occur together—that is, if P(A and B ) = 0. Alternate notation: 𝑷(𝑨 ∩ 𝑩). For example: Using a deck of playing cards and drawing a card at random, the events A = card is a King, and B = card is a Queen are mutually exclusive because a single card cannot be both a King and a Queen. Thus we can calculate the probability of A or B as the sum of their individual probabilities - P(A or B) = P(A) + P(B). General Addition Rule If A and B are any two events resulting from some chance process, then P(A or B) = P(A) + P(B) – P(A and B) Venn Diagrams and Probability The complement Ac contains exactly the The events A and B are mutually exclusive outcomes that are not in A. (disjoint) because they do not overlap. That is, they have no outcomes in common. The intersection of events A and B (A ∩ B) The union of events A and B (A ∪ B) is the is the set of all outcomes in both events A set of all outcomes in either event A or B. and B. AP Statistics – Chapter 5 Notes: Probability: What are the Chances? Page 2 of 3 5.3: Conditional Probability and Independence Conditional Probability The probability that one event happens given that another event is already known to have happened is called a conditional probability. Suppose we know that event A has happened. Then the probability that event B happens given that event A has happened is denoted by P(B | A). The symbol “” is read as “given that,” so we read P(B | A) as the probability that B occurs given that A has already occurred. Calculating Conditional Probability To find the conditional probability P(A | B), use the formula P( A  B) P( A | B)  P( B) The conditional probability P(B | A) is given by P( B  A) P( B | A)  P( A) The General Multiplication Rule The probability that events A and B both occur can be found using the general multiplication rule P(A ∩ B) = P(A) P(B | A), where P(B | A) is the conditional probability that event B occurs given that event A has already occurred. Conditional Probability and Independence Two events A and B are independent if the occurrence of one event does not change the probability that the other event will happen. In other words, events A and B are independent if P(A | B) = P(A) and P(B | A) = P(B). The Multiplication Rule for Independent Events If A and B are independent events, then the probability that A and B both occur is P(A ∩ B) = P(A) P(B) AP Statistics – Chapter 5 Notes: Probability: What are the Chances? Page 3 of 3

Use Quizgecko on...
Browser
Browser