Basic Calculus Learning Activity Sheet PDF
Document Details

Uploaded by TenderTriumph1219
Dumangas National High School
Tags
Summary
This document contains examples and solutions related to evaluating limits of transcendental functions such as sine, cosine, and exponential functions. The activity sheet demonstrates how to determine limits using tables of values and explores special limits.
Full Transcript
# Learning Activity Sheet (LAS) No. 1 ## BASIC CALCULUS LEARNING ACTIVITY SHEET **Illustrating limits involving the expressions $ \frac{sin(t)}{t} $ , $ \frac{1-cos(t)}{t} $ and using tables of values** ### Learning Competency with Code Illustrates limits involving the expressions $ \frac{sin(...
# Learning Activity Sheet (LAS) No. 1 ## BASIC CALCULUS LEARNING ACTIVITY SHEET **Illustrating limits involving the expressions $ \frac{sin(t)}{t} $ , $ \frac{1-cos(t)}{t} $ and using tables of values** ### Learning Competency with Code Illustrates limits involving the expressions $ \frac{sin(t)}{t} $ , $ \frac{1-cos(t)}{t} $ and using tables of values (STEM_BC11LC-IIIb-2) ### Background Information for Learners #### Special Limits of Transcendental Functions This learning activity focuses on determining the limits of three special functions. These are $ f(t) = \frac{sin(t)}{t} $ , $ f(t) = \frac{1-cos(t)}{t} $, $ h(t) = \frac{e^t - 1}{t} $ ### Accompanying DepEd Textbook and Educational Sites Basic Calculus Learner's Material. First Edition (2016). Pasig City: Department of Education-Bureau of Learning Resources (DepEd-BLR), pp 62-72. Leithold, L. 2002. The Calculus 7. Pearson Education Asia Pte Ltd 23-25 First Lok Yang Road Singapore 629733. ### Activity Proper #### Example 6: Evaluate the $lim_{t \to 0} \frac{sin(t)}{t} $ **(Note: The values on the given table below were computed using scientific calculator set to radian mode.)** **Solution:** Let us construct the table of values for $g(t) = \frac{1-cos(t)}{t}$ starting with values of t approaching 0 from the left or through values less than and infinitesimally close to 0. Similarly, we construct the table of values for g(t) starting with the values of t approaching 0 from the right or through the values greater than and infinitesimally close to 0. | t | $ g(t) = \frac{1 - cos(t)}{t} $ | |---|---| | -1 | -0.459697694 | | -0.5 | -0.244834876 | | -0.1 | -0.049958347 | | -0.01 | -0.0049999583 | | -0.001 | -0.0005 | | -0.0001 | -0.00004999 | |0.0001 | 0.00004999 | | 0.001 | 0.0005 | | 0.01 | 0.0049999583 | | 0.1 | 0.049958347 | | 0.5 | 0.244834876 | | 1 | 0.459697694 | **Remarks:** - Based from table 6 and graph on figure 5, as the values of t get closer and closer to 0 from the left, the values of $ f(t) = \frac{sin(t)}{t} $ get closer and closer to 1. Hence, $ lim_{t \to 0^{-}} \frac{sin(t)}{t} = 1$. - Similarly, as values of t approaches 0 from the right, the values of $ f(t) = \frac{sin(t)}{t} $ approaches 1. Thus, $lim_{t \to 0^{+}} \frac{sin(t)}{t} = 1$ - Since the two-sided limits exist and they have a common value of 1, then $ lim_{t \to 0} \frac{sin(t)}{t} = 1$ #### Example 8: Evaluate the $lim_{t \to 0} \frac{e^t - 1}{t}$ **Solution:** Let us construct table 8 of values for $h(t) = \frac{e^t - 1}{t} $ , we start with values of t approaching 0 from the left or through values less than and infinitesimally close to 0. Similarly, we construct the table of values for h(t) starting with the values of t approaching 0 from the right or through the values greater than and infinitesimally close to 0. | t | $h(t) = \frac{e^t - 1}{t} $ | |---|---| | -2 | 0.632120558 | | -1.5 | 0.78693868 | | -1.1 | 0.951625819 | | -1.01 | 0.995016624 | | -1.001 | 0.999500165 | | -1 | undefined | | -0.999 | 1.00050017 | | -0.99 | 1.005016708 | Since the two-sided limits exist and they have a common value 1, then $lim_{t \to -1} \frac{e^{t+1} - 1}{t + 1} = 1 $. **Remarks:** Based on the above discussion, we have the following results. - $lim_{t \to 0} \frac{sin(t)}{t} = 1$ - $ lim_{t \to 0} \frac{1 - cos(t)}{t} = 0$ - $lim_{t \to 1} \frac{e^{t + 1} - 1}{t+1} = 1$ #### Example 9: Evaluate the $lim_{t \to -1} \frac{sin(t + 1)}{t + 1} $ **(Note: The values on the given table below were computed using scientific calculator set to radian mode.)** **Solution:** **Method 1:** Let us construct the table of values for $g(t) = \frac{1-cos(t-1)}{t - 1} $ , let x=t-1, if t = 1, then x = 0. Hence, $lim_{t \to 1} \frac{1-cos(t - 1)}{t - 1} = lim_{x \to 0} \frac{1-cos(x)}{x} = 0$. **Method 2:** We start with values of t approaching -1 from the left or through values less than and infinitesimally close to -1. Similarly, we construct the table of values starting with the values of t approaching -1 from the right or through the values greater than and infinitesimally close to -1. Refer to table 11 below. | t | $h(t) = \frac{e^{t + 1} - 1}{t + 1} $ | |---|---| | -2 | 0.632120558 | | -1.5 | 0.78693868 | | -1.1 | 0.951625819 | | -1.01 | 0.995016624 | | -1.001 | 0.999500165 | | -1 | undefined | | -0.999 | 1.00050017 | | -0.99 | 1.005016708 | Hence, $lim_{t \to -1} \frac{sin(t + 1)}{t + 1} = 1$. #### Example 10: Evaluate the $lim_{t \to 1} \frac{e^{t + 1} - 1}{t + 1} $ **(Note: The values on the given table below were computed using scientific calculator set to radian mode.)** **Solution:** **Method 1** Let us construct the table of values for g(t) = lim t→1 $ \frac{1 - cos(t - 1)}{t - 1}$. Let x=t-1, ift = 1, then x = 0. Hence, lim $t \to 1$ $\frac{1 - cos(t - 1)}{t - 1} = lim_{x \to 0} \frac{1 - cos(x)}{x} = 0$. **Method 2:** We start with values of t approaching -1 from the left or through values less than and infinitesimally close to -1. Similarly, we construct the table of values starting with the values of t approaching -1 from the right or through the values greater than and infinitesimally close to -1. Refer to table 11 below. | t | $h(t) = \frac{e^{t + 1} - 1}{t + 1} $ | |---|---| | -2 | 0.632120558 | | -1.5 | 0.78693868 | | -1.1 | 0.951625819 | | -1.01 | 0.995016624 | | -1.001 | 0.999500165 | | -1 | undefined | | -0.999 | 1.00050017 | | -0.99 | 1.005016708 |