ACE Notes - Uddhav PDF

Summary

These notes cover communication principles, including various modulation techniques like Amplitude Modulation (AM), Frequency Modulation (FM), and different types of pulse modulation. Key concepts such as bandwidth requirement, signal transmission, and sampling theorems are also discussed.

Full Transcript

# UNIT-1 ## Communication ### Block diagram - Information Source - Input Transducer - Transmitter - Channel - Receiver - Destination - Noise ### Speed of Radio Signal - Velocity of light = $3 \times 10^{8}$ m/s - Wavelength of Radio Wave = $\lambda = \frac{c}{f}$ ### Question 9.1 A Radio-station...

# UNIT-1 ## Communication ### Block diagram - Information Source - Input Transducer - Transmitter - Channel - Receiver - Destination - Noise ### Speed of Radio Signal - Velocity of light = $3 \times 10^{8}$ m/s - Wavelength of Radio Wave = $\lambda = \frac{c}{f}$ ### Question 9.1 A Radio-station transmit signal of 30MHz what is the wavelength of Radio signal. $ \lambda=\frac{c}{f}=\frac{3 \times10^{8}}{30\times 10^{6}} =10^{-2}=0.01 \times 10^{0}$ $\lambda = 10m$ #### Question 9.2 A signal send by Radio Transmitter to a satellite has a frequency of 10 GHz, What is its wavelength. $\lambda=\frac{c}{f}=\frac{3\times10^{8}}{10\times10^{9}}=\frac{3 \times 10^{-1}}{10} =0.03m$ $\lambda= 3cm$ ## Radio frequency Spectrum | Frequency Range | Name of The Band | | ------------- | ------------- | | 3 to 30kHz | Very Low | | 30kHz to 300kHz | Low | | 300kHz to 3000KHz (3MH2) | Moderate (Medium freq) | | 3 MHz to 30MHz | High | | 30MHz to 300MHz | Very High | | 300MHz to 3000MHz (3GHz) | Ultra High | | 3GHz to 30GHz | Super High | | 30 GHz to 300 GHZ | Extreme High | ## Baseband signal Transmission & Bandwidth requirements - **Telephone** - Baseband Signal - Analogue Information - Telephone - **Voice of analogue baseband signal** - Baseband Signal - Analogue Communication - TV set ## Video as analogue baseband signal - Telephone - Baseband Signal - Digital Information - ADC (Parallel) - Analogue Information - DAC - Telephone - Analogue Information ## Voice as analogue baseband signal converted to digital form - Computer - Baseband Signal - Digital Information - Computer ## Computer data as digital baseband signal ## Bandwidth requirement of same baseband signal - speech, music, & video ### Note - Bandwidth is important for long distance communication - bandwidth requirements, to avoid mixing of signals in communication ## Types of Transmission media - Guided - Wired - physically required - Unguided - Wireless - No need ## Modulation Techniques - Signals - Information Signal - Low frequency - Baseband - Carrier Signal - High Frequency - Modulation signal - General Equation of carrier wave can be written as - X = A sin (wt + β) - X = Instantaneous value of voltage and current - A = Max Amplitude - w = angular freq (2πf) - β = Phase angle - If anyone parameter is varied in accordance with Instantaneous "modulating" signal, then process is called modulation process - the process of changing Amplitude, frequency, phase of the carrier wave in accordance with Instantaneous value of modulating value signal is called as modulation - There are three modulation Techniques - Amplitude modulation - frequency modulation - Phase modulation - we can perform one by one modulation by keeping another two techniques as constant and definition is the same. ## Simplex and Duplex System - Simplex System - Keyboard - Monitor - Walkie Talkie - Duplex system - Half duplex - Full duplex - Telephone - Simultaneous from both side ## Modes of communication - Point - to - Point communication - Phone - one-to-one - Broodcast communication - TV - Transmitte one person & receivers are many. ## Necessity of Modulation - Length of Antenna - Interference - Poor Transmission ## Length of Antenna - Modulation allows us to transmit data over long distance effectively by utilizing specific frequency ranges overcoming limitations of antenna lengh. ## Interference - Modulation helps differentiate signals from different sources. - Reducing the chances of interference - Enabling multiple devices to share the same frequency band - Modulation enchances signal quality and resilence mitigating issues like poor transmission due to noise, fading and distortion in the communication channel. ## Mathematical Amplitude Modulation Expression - Modulating voltage and carrier voltage represented mathematically as - $V_m = V_m sin W_mt$ - (1) - $V_c = V_c sin W_ct$ - (2) - $φ$ is ignored because it is constant in amplitude modulation. - The amplitude of the carrier ($V_c$) will change in accordance with instantaneous value of Modulating voltage ($V_m$). - Let A = amplitude of Resultant amplitude Modulated wave! - ie.. $A = V_c + V_m$ - (3) - Put value of equation (1) in (3) - $∴ A = V_c + V_m.sin w.mt$ - $A = V_c (1+ \frac{V_m}{V_c} sin w_m.mt)$ - (4) - Modulation index of a amplitude modulated wave is - $m = \frac{V_m}{V_c}$ - (5) - $A = V_c(1 + m.sin w_m.mt)$ - $m$ suffix everywhere, take note. (Amplitude Modulation) - The instantaneous value of resulting "e_Am" wave is denoted by e_Am. - $e_Am = A sin W_ct$ - (5) - Now put the value of 'A' i.e. equation (4) in ( 5) - $e_Am = V_c(1+m.sin w_m.mt).sin W_ct$ - $∴ e_Am = V_c(sin W_ct + m.sin w_m.mt.sin W_ct)$ - $W.K. t. 'sin A .sin B =\frac{1}{2} [cos(A-B)-cos (A+B)]'$ - Now , put formula - $∴ e_Am = V_csin W_ct + \frac{V_m}{2}[cos(W_ct-w_mt)-cos (W_ct + w_mt)]'$ - $e_Am = V_csin. W_ct + \frac{V_m}{2}.cos(W_ct-w_mt)-\frac{V_m}{2}.cos [W_ct + w_mt].$ - $∴ e_Am = V_csin. W_ct + \frac{Vim}{2}.cos(Wc-wm)t-\frac{V_m}{2}cos(Wc+wm)t.$ - The equation of Amplitude modulated wave suggest that it contains three frequencies - i) Original camier frequency - ($W_c = 2πf_c$) - ii) Upper onde band freq. (USB) → ($W_c+W_m = 2πf_c + 2πf_m$) ↳ Sum of camer + modulating signal freq. ↳ Also denoted by (fc + fm). - iii) Lower side Band freq. → ($W_c-W_m$) ↳ Difference beton modulating sig. freq. and cammer freq. ↳ Denoted by (fc-fm). ### Question 9.1 An Audio signal of 500Hz is used to modulate a camier of 500KHz. Determine i) Bandwidth ii) Side Band freq. - Audio ongenal - Modulated signal - $f_m$ - Camier signal - Lanier freq. - $f_c$ #### i) - $Man - Min = B.W$ - ie.. $2f_m$ - $BW = 2 \times 500 Hz$ - $BW = 1000Hz$ #### ii) - $Side Band freq. $ - $LSB= f_c - f_m= 500KHz - 500Hz = 500KHz-0.5KHz$ - $LSB= 499.5KHz$ - $USB= f_c + f_m $= 500KHz + 500 Hz $= 500.5KHz$ ## 9.2 An audio signal is given by em = 48sin3600t its amplitude modulades a camer wave given by fc = 120sin 62800t calculate and ) Audio frequency 2) Camer frequency 3) % of Modulation. ### Note - audio signal = modulating signd - $e_m=V_m$ - $e_c= V_c$ - camera signal ### Given - $e_m = 48sin3600t$ - (1) - $V_m = V_m sin W_mt$. - (2) - By comparing (1) & (2) - $W_mE = 3600t$ - $W_m = 3600$ - Audio freq. - $f = \frac{W_m}{2π} = \frac{3600}{2\times3.14}$ - $f= 572.95 Hz$ ### i) - $f_c = 120sin 62800t$ - (3) - $V_c = V_csin W_ct$ - ( 4) - By comparing $ (3) + (4) $ - $W_ct = 62800t$ - $W_c = 62800$ - Camer freq. - $f= \frac{W_c}{2π} = \frac{62800}{2π}$ - $f = 9994.930 Hz $ or $f= 9.994k세$ ### iii) - Modulation Indea - $m = \frac{V_m}{V_c} = \frac{48}{120} = 0.4$ - % Modulation - $% Modulation = 0.4 \times 100 = 40%$ ## 9.2 A spectrum analysis of an em wave gives the following information 50vot @ 750 kHz 20 V @ 748 KHz @752 kHz 20 v then find 1) Camer freq. 2) freq. at side band 3) % of Modulation 4) B.W. - $V_o=50v$ - $m_v_c=200$ ### i) - $Cammer freq = f_c= 750kHz$ ### ii) - $freq. at side bands$ - $USB= f_c+ f_m = 752 KHz$ - $LSB = f_c - f_m = 748KHz$ ### iii) - % of modulation - $Modulation = \frac{m_v_c}{V_c}=\frac{2 \times 20}{50}=0.8$ - $m% = 80$ ### iv) - $B.W = f_{max}-f_{min}$ - $=(f_c+f_m)-(f_c-f_m)$ - $=f_c+f_m-f_c+f_m$ - $= 2f_m $ - $=(752-748) KHz$ - $B.W = 4KHz$ ## 9.2 Calculate the modulation factor and % of modulation factor for the following figure. - $E_{max} = 77v$ - $E_{min} = 37v$ ### i) - $Modulation factor = \frac{E_{max}-E_{min}}{E_{max}+E_{min}}=\frac{77-37}{77+37}=\frac{40v}{114v}$ - $M.F = 0.3508$ ### ii) - $% Modulation factor = 100 \times 0.3508$ - $% M.F = 35.08%$ ## 9.3 An amplitude modulated camier wave is viewed on an oscilloscope and has created voltage of 55V P-P the bottom point of the wave measures 10V p-p. find 1) What is the M.F. 2)% Modulation 3) See what is P-P unmodulated camier voltage. - $f_{max} = 55v$ - $ f_{min} = 10v$ ### i) - $Modulation factor = M.f =\frac{E_{max}-E_{min}}{E_{max}+E_{min}}=\frac{55 - 10}{55 + 10} = \frac{45v}{65v}$ - $M.F. = 0.692$ ### ii) - % Modulation factor = $100 \times 0.692$ - $%M.F = 69.2%$ ### iii) - $Unmodulated P-P camier voltage$ = average of 2 voltages i.e.. $E_{max}$ & $E_{min}$ - $U.C.V = \frac{E_{max}+ E_{min}}{2}= \frac{55+10}{2} = \frac{65}{2}$ - $U.Vc = 32.5 v$ ## Types of Modulation ### Different Conventions - **Analogue to Analogue Conversion** - AM - FM - PM - **Analogue to Digital Conversion** - PCM - DM - AOM - **Digital to Digital Conversion** - Line coding - Block coding - **Digital to Analogue Conversion** - ASK - FSK - PSK - **Analogue to Analogue Modulation** - **Also known as Source Coding Modulation** - **Digital Continuous Wave Signal** - **Pulse Analogue Modulation** - PAM - PWM - PTM - PPM - PFM # Modulation - **Analogue Modulation** - AM - DSBFC - DSBSC - SSB - LSB - VSB - Angle Modulation - Analogue Pulse Modulation - PAM - PWM - PPM - PFM - **Digital Modulation** - Digital Pulse Modulation - PCM - DM - Digital Continuous Wave Modulation - ASK - FSK - PSK ## Sampling Theorem - Ideal sampling - Natural Sampling - Flat Top sampling - most easy to recognize ### Natural sampling - High speed switch is turned on for a small period of time when sampling is applied. ### Ideal sampling: - Pulses of a Analogue signal are sampled and it is difficult to implement. ### Flat Top sampling - Sample level is held using capacitor, based - switching (ON/OFF), this is widely used sampling method. - The proces of sampling is called PAM. (Pulse amplitude modulation). ## Nyguist Theorem - $BW = f_{max} - f_{min}$ - $BW = f_{max} - 0$ - $BW = f_{max}$ - $Low Pass signal, Nyquist rate = 2f_{max}$ - $BW=f_{max}-f_{min}$ - $∴ BW= f_{max}$ - $Band Pass filter, Nyquist rate = 2f_{max}$ - $f_s = f$ - $I/p Signal$ - $Recovered sine wave at f_s = f (Recovery gives distorted O/P)$ - $I/P Signal$ - $X_1$ - $X_2$ - $X_3$ - $X_4$ - $X_1$ - $X_2$ - $X_3$ - $X_4$ - $Recovered sine wave at f_s = 2f (Recovery gives good O/P)$ - $I/P Signal$ - $X_1$ - $X_2$ - $X_3$ - $X_4$ - $X_5$ - $X_6$ - $X_7$ - $X_8$ - $X_9$ - $Recovered destre sine wave if f_s = 4f (Recovery gives best O/P)$ ## Introduction to PAM ### Pulse Amplitude Modulation - Double Polarity - Single Polarity - PAM System ### Note - Analogue/Amplitude Modulation - Pulse Modulation - Analogue - Digital - Low/High - Modulating - High/Low - Signal Freq - Information Signal - Low frequency modulating signal or low freg. baseband signal. - Cammer pulse Train - Time axis - double polarity PAM sig - t - x(t) - t - cammer - t - y(t) - t - single polarity pulse train ## Generation of double polarity PAM - x(t) - Modulating signal - Low pass filter (P) - Multiplier XW/FET (+) - cammer (Pube train) Generator - y(t) - Generate PAM signal ## Demodulation of PAM - PAM signal - LPF - Modulating signal - y(t) ## Pulse width Modulation - Pulse Time Modulation - PWM - Pulse position modulation - x(t) - pulse width - low frequency modulating signal - time axis - high frequency Cammer - time axis - y(t) - pulse width modulated signal - time axis ### Note - Amplitude Main - PAM - I/P - cammer wave - sine wave - PWM - I/P - pulse train - Cammer wave -> width of pulse train. - **Def**: - The width of cammer wave (pulses) is changed in accordance with instantaneous value of modulating signal is called as pulse width modulation - Similarly for PAM and AM ## Generation of Pulse width Modulation - $S(t)$ - modulating signal - $D_A$, $R_A$ - Cammer sig - $R_B$, Discharge - Supply - $IC 555$ - Trigger - $Control Vtg, GND$ - Supply - $O/P PWM supply y(+)$ - $s(t)$ - $Cammer signal s(t)$ - $S(t)C_A$ - $V_{in}, R_A$ - '' Point waveform - These sharp negative going pulses are applied to the trigger I/P of IC555 ## Demodulation of PWM - $PWM signal J/P$ - PWM to PAM Converting Block - LPF - O/P modulating signal ## Practical diagram of PWM demodulation - $PWM signal$ - $Schmitt Triggered Ckt as a pulse genr$ - $Ramp generator Ckt$ - $Adder$ - $Level Shifter Block$ - $Delay Ckt$ - $React-fied Block$ - $LPF$ - $Recovered original information O/P$ ## Waveforms of pwm - PWM J/P signal with noise - Time - O/P of Schmitt Trigger (Regenerated PWM) - Time - Ramp generated O/P - Reference pulse or generated O/P or synchronisation pulse - Time - Adder O/P - Time - Level Shifter O/P - $pwm$ - Rectified output O/P - Time - Recovered original Mod n signal - Time ## Pulse Position Modulation - Modulation signal - Cammier wave signal - Time - PWM - Time - PPM - Time ## Generation of PPM - Modulating signal - $JC555 Monostable Multivibrator$ $JC555$, monastable multivibrator - PPM. - Camier signal - Same diagram of pwm is repeated in ppm. ## Demodulation - $PPM$ - $Schmitt Triggered Ckt on pulse generator$ - $Pulse generation for synchronisation$ - R - Flip - S - Flop - Pulse - O/P Modl of signal ## Multiplexing - Many signals - Signal1 - Signal2 - Signals - $Multi-plexing$ - $Transimission line (signals)$ - $De'MUX$ - Signal 1 - Signal 2 - Signal n - $Multiplexing$ - FDM - Frequency Division Multiplexing - TDM - Time Division Multiplexing - Synchronized - Asynchronized ## Frequency division Multiplexing (FDM) - $Signal 1 J/P$ - $f_{n1} cammer$ - $Modulation$ - $CH_1$ - $Signal 2 J/P$ - $f_{n2} cammer$ - $Modulation$ - $CH_2$ - $Signal n J/P$ - $f_{n} cammer$ - $Modulator$ - $CH_n$ - $Multiplexing sig O/P$ - $Linear common transmission adder$ - $Line forall.$ ## Power Relation in AM -1) Unmodulated camier ($f_c$)= $P_c$ - 2) Lower SideBand ($f_{LSB} = f_c-f_m = P_{LSB}$ - 3) Upper side band ($f_{USB} = f_c + f_m = P_{USB}$ - $∴ P_T = P_c + P_{LSB}+ P_{USB}$ - (1) - $P_T = \frac{E_c^2}{R}+\frac{E_{LSB}^2}{R}+\frac{E_{USB}^2}{R}$ - (2) - $Now : E_c, E_{LSB}, E_{USB}$ are the RMS value of the 'camier', Lower side band, Upper side band respectively. - R = is the characteristic Impedance of Antenna in which total Power is dissipated. - $∴ cammer paver = P_c = \frac{E_c^2}{R} = \frac{(f_c/√2)^2}{R}$ - $∴ R_c=\frac{E_c^2}{2R}$ ### 2) Power in side bonds = $P_{SB} = P_{LSB} = P_{USB} = \frac{F_{SB}^2}{R}= \frac{E_{SB}^2}{R}$ - $∴ P_{SB} = \frac{E_{SB}^2}{R}$ - **The peak amplitude of each side bond i's F= $\frac{m_v_c}{2} = m_v_c E $** - $ ∴ P_{SB} = (\frac{m_v_c}{2})^2 \frac{1}{R} = (\frac{m_v_cE}{2})^2 \frac{1}{R}$ - $= \frac{m^2V_c^2}{8} \frac{1}{R} => \frac{m^2V^2}{8R}$ - $= \frac{m^2V_c^2}{8R}$ '' $V = E$ '' - $∴ P_{LSB} = P_{USB} = \frac{m^2E_c^2}{8R}$ - $∴ P_c = \frac{E_c^2}{2R}$--- BY cammer power formula. - $Similarly P_{LSB} = P_{USB} = \frac{m^2.P_c}{4}$ - Now putting values in equation (2) - $P_T = P_c + \frac{m^2}{4} P_c +\frac{m^2}{4}P_c$ - $P_T = P_c(1+\frac{2m^2}{4})$ - $∴ P_T = P_c(1+\frac{m^2}{2})$. - $∴ \frac{P_T}{P_c} = (1+\frac{m^2}{2})$. - $∴ \frac{P_T}{P_c}-1=m^2$ - $∴ m = √2( \frac{P_T}{P_c} -1)$ - $∴ n = Transmission efficiency of AM wave$ - $n = \frac{Total SB Power }{Total Transmitted Power}$ - $n = \frac{ P_{LSB} + P_{USB} }{P_T}$ - $n=\frac{\frac{E_{LSB}^2}{R}+\frac{E_{USB}^2}{R}}{P_T}$ - By Simplified - $n = \frac{ \frac{m^2P_c}{4} + \frac{m^2}{4} P_c }{ P_c ( 1 + \frac{m^2}{2} ) } $ - $= \frac{ P_c ( \frac{m^2}{2} ) }{P_c(1 + \frac{m^2}{2} ) }$ - $= \frac{ \frac{m^2}{2} }{ (1+\frac{m^2}{2} ) }$ - $= \frac{ 2m^2 }{ (2+m^2) } = \frac{m^2}{(2+m^2) } $ - $n = \frac{m^2}{ (2+m^2) }$ - $∴ In % we can write $ - $% n = n \times 100 = \frac{ m^2 }{ 2+m^2} \times 100$ ## AM Power in term of current - $P_T = I_t^2 \times R$ - (1) - $P_c = I_c^2 \times R$ - (2) - $∴ \frac{P_T}{P_c} = \frac{I_t^2}{I_c^2}$ - by using (1) & (2) - $∴ \frac{P_T}{P_c} = (\frac{I_t}{I_c})^2 = (1+ \frac{m^2}{2})^2$ - $∴ (\frac{I_t}{I_c})^2 = (1+\frac{m^2}{2})^2$ - $∴ I_t = I_c(1 + \frac{m^2}{2})$ - $∴ I_t = √I_c^2(1 + \frac{m^2}{2})$ - $∴ I_t = I_c √(1 + \frac{m^2}{2})$ - $∴ m^2 = 2(\frac{I_t}{I_c})^2-1$ - Modulation Index in form of 'I' - $Now : In the terms of 'm'$ - $m = √2(\frac{I_t}{I_c})^2-1 $ ## Modulation Index in the from of Voltage - $m = √2(\frac{E_T}{E_c})^2-1$ - $∴ m = √2(\frac{E_T}{E_c})^2-1$ ## Power relation in AM ### Question 9.1 A 12KW carrier wave is amplitude modulated at 80% depth of modulation by a sinusoidal modulating signal. calculate 1) side band power, 2) Total power 3) Transfer efficiency of AM wave ### Given - $P_c = 12KW = 12 \times 10^3 W$ - $m = 0.8$ - $P_{LSB}=P_{USB}=\frac{m^2}{4} \times P_c = \frac{(0.8)^2}{4} \times 12\times10^3 = 0.64 \times 12\times 10^3 =0.16\times 12RW=1.92KWW \times2$ - $P_{SB} = 3.84KW$ ### ii) - $P_T = P_c(1+\frac{m^2}{2}) = 12K(1+\frac{0.64}{2})=12K(1.32)$ - $P_T = 15.84KW$ ### iii) - $Efficiency of Transver$ - $n = \frac{m^2}{ (2+m^2) } = \frac{(0.8)^2}{(2+0.8)^2}=\frac{0.64}{2.84}=0.242 $ - $n= 0.242$ - $% n = 24.2%$ ### Question 9.2 Transmitter transmitt 18kw of power without modulation and 18kw of power after amplitude modulation what i's the modulation Inden and to modulation. ### Given - $P_c = 16kW = 16 \times 10^3 W$ - Before modulation - $P_T = 18KW = 18 \times 10^3 W$ - After modulation, ### Formula, - $P_T = (1 + \frac{m^2}{2})P_c$ - $m = √2( \frac{P_T}{P_c} -1) = √2( \frac{18}{16} -1)$ - $m = √2( \frac{2}{16}) = √ \frac{2\times2}{16} $ - $m = \frac{1}{2}$ - $% m = 50.0%$ ### Question 9.3 A Total Antenna cument of an Am transmitter is 6A with the modulation index is 0.6 calculate the antenna cument when only the carrier is set. ### Given - $I_T = 6A$ - $m=0.6$ - $∴ I_c = I_T √(1 + \frac{m^2}{2}) = 6√(1 + \frac{0.6^2}{2}) $ - $∴ I_c = 6 √1.18$ - $∴ I_c = 6 \times 1.086$ - $∴ I_c = 6.1810A$ - $∴ I_c = 5.523A$ ### Question 9.4 The Rms Antenna current of an AM Transmitter increases by 20% over its unmodulated value when sinusoidal modulation by 4KHz signal is applied calculate modulation index. ### Given - $I_T= 4.8 KHz = 4.8 \times 10^3 Hz$ - $I_c = 4 KHz = 4 \times 10^3 Hz$ - $m = √2(\frac{I_T}{I_c})^2 -1 = √2(\frac{4.8}{4})^2-1 = √2(1.44)-1 = √2.88-1 = √1.88$ - $M=1.37$ ## 9.4 Calculate Total modulation index if camer wave i's amplitude modulated by 3 modulation signal with modulation Indices (0.7, 0.35, 0.45) ### Formula - $M=√{m_1^2+m_2^2+m_3^2}$ - $m =√{(0.7)^2 + (0.35)^2+ (0.45)^2}$ - $M = 0.9027$ ## 9.5 AM Transmission radiates 10.1KW with the camer un modulated and a 11.9k0o when the conter is sinusoidally modulated another calculate modulation index, if camier sine wave cones-ponding to 35% modulation, is transmitted simultaneury * Determine the total radiated power. ### Given - $P_T = 11.9kW = 11.9 \times 10^3 W$ - $P_c= 10.1kW = 10.1 \times 10^3 W$ ### i) - $m_1 = ? $ - $m_1 = √2(\frac{P_T}{P_c}-1) = √2(\frac{11.9}{10.1}-1) = √1.356 = 1.164 = 0.599$ ### ii) - $m_2 = 0.35$ ### iii) - $m = √{m_1^2+m_2^2}=√{0.4789}$ - $M= 0.692$ ### iv) - $ P_T = P_c (1 + \frac{m^2}{2}) => P_T = 10.1K(1+0.4788)^2$ - $Radiated Power = P_T = 10.1K (1.2394)$ - $P_T = 12.394KW$ ## 9.7 Broadcast AM Transmitter radiates 55kw of camer power If the modulation index is 0.80, what will be the radiated power. ### Given: - $P_c = 55kW = 55\times10^3 W$ - $m = 0.80$ ### To find: - $Rodiated power = P_T$ - $P_T = P_c (1 + \frac{m^2}{2} ) = 55K ( 1 + \frac{0.64}{2} ) = 55K (1.32)$ - $∴ P_T = 72.6 KW$ ## 9.8 When to modulation is 70% of an Am wave transmitter produces Itkw, what will be the camier power. ### Given: - $m = 0.7$ - $P_T = 11KW$ - $P_c = ?$ - $P_c = \frac{P_T}{(1 + \frac{m^2}{2}) } = \frac{11K}{(1+\frac{0.49}{2}) } $ - $∴ P_c = \frac{11K}{(1.245)} = \frac{11K}{1.245}$ - $P_c = 8.835KW$ - $∴ P_c = 0.1131 \times 10^3$ - $P_c = 8.841 KW$

Use Quizgecko on...
Browser
Browser