Clinical Interpretation of Arterial Blood Gas and Oxygenation - PDF
Document Details
Uploaded by RockStarSupernova3374
FEU-NRMF School of Respiratory Therapy
Pio T. Esguerra II
Tags
Summary
This presentation covers the clinical interpretation of arterial blood gases and oxygenation, including respiratory anatomy, clinical manifestations, laboratory tests used, acid-base imbalances, and assessing oxygenation status. It is a useful resource for medical students or practitioners needing a concise overview of this topic.
Full Transcript
Clinical Interpretation of Arterial Blood Gas and Oxygenation Pio T. Esguerra II, MD, FPCP, FPCCP, DIH Associate Professor of Medicine Dean, FEU-NRMF School of Respiratory Therapy Head, Pulmonary Care, FEU-NRMF Medical Center Anatomy Upper respiratory tract Lower respiratory tract t...
Clinical Interpretation of Arterial Blood Gas and Oxygenation Pio T. Esguerra II, MD, FPCP, FPCCP, DIH Associate Professor of Medicine Dean, FEU-NRMF School of Respiratory Therapy Head, Pulmonary Care, FEU-NRMF Medical Center Anatomy Upper respiratory tract Lower respiratory tract trachea bronchi bronchioles alveoli Anatomy of Respiratory Tract (Broncho-pulmonary segments) Right lung Left lung Upper lobe Upper Apical Apico-posterior Posterior Anterior Anterior Middle lobe Superior lingula Lateral Inferior lingula Medial Lower Lower lobe Superior Superior Antero-medial Medial Lateral Anterior Lateral Posterior Posterior Chest Wall Ventilatory Organs (Thoracic Pump) Gas Exchange Organs Clinical manifestation of respiratory diseases Dyspnea Cough Chest pain hemoptysis Laboratory tests: Sputum analysis Culture & sensitivity Arterial Blood Gas (ABG) Sputum cytology Oxygen-hemoglobin dissociation curve proportion of hemoglobin in its saturated form on the vertical axis against the prevailing oxygen tension on the horizontal axis. important tool for understanding how our blood carries and releases oxygen. relates oxygen saturation (sO2) and partial pressure of oxygen in the blood (pO2) determined by what is called "Hemoglobin affinity for oxygen" (acquires and releases oxygen molecules into the fluid). 88 Oxyhemoglobin dissociation curve 9 Haldane vs Bohr Haldane effect- describes how oxygen concentrations determine hemoglobin’s affinity to carbon dioxide. Bohr effect- describes how CO2 and H+ concentrations affect hemoglobin’s affinity to oxygen 10 1 0 110 1 Arterial Blood Gas (ABG) Specimen: Arterial blood “arterialized” capillary blood Materials: cotton balls (wet), rubber stopper syringe heparin ( 0.5ml of 1000-U/ml per 5ml blood) ice for transport Factors affecting levels of Arterial Blood Gases Exposure to ambient atmosphere (or air bubble) Temperature (gas pressures & pH) Excess heparin (lower pCO2 by 12-25%) Transport on ice Stable for 30 minutes Take note: Measure ABG at 37C For each degree (C) increase in temp. pO2 falls by 7% pCO2 rise by 3% 1. Careful history & physical examination 2. Electrolytes & arterial blood gas (ABG) 3. Evaluate the anion gap Anion gap= Na-(Cl+HCO3) Normal value= 10-12 meq/L Reference values: Blood Gases & Electrolytes Arterial Venous pH: 7.35-7.45 mmHg Na: 135-148 mEq/liter K: 3.5-5.3 pCO2: 35-45 Cl: 98-106 pO2: 80-100 Anion gap: 12-18 O2 sat: 95% of pO2 Serum osmolality: HCO3: 22-26 285-310 mOsm/kg H20 SUMMARY ALGORITHM FOR ACID-BASE INTERPRETATION pH < 7.35 7.35 – 7.45 > 7.45 ACIDOSIS NORMAL ALKALOSIS or COMPENSATED Uncompensated Uncompensated 35 - 45 PaCO2 PaCO2 35 - 45 Metabolic Acidosis pH Metabolic Alkalosis < 35 > 45 Partly Compensated < 7.4 > 7.4 Partly Compensated Metabolic Acidosis > 45 < 35 Metabolic Alkalosis Normal or Normal or Compensated Compensated Respiratory Acidosis Alkalosis Respiratory Compensated PaCO2 Compensated 22 - 26 HCO3 HCO3 22 - 26 Metabolic Respiratory Acidosis < 35 Alkalosis > 26 < 22 > 26 < 22 Uncompensated Compensated Compensated Uncompensated > 45 Respiratory Acidosis Respiratory Metabolic Respiratory Alkalosis Acidosis Alkalosis Partly Compensated Combined 35 - 45 Combined Partly Compensated Respiratory Acidosis Respiratory Respiratory Respiratory Alkalosis and Metabolic and Metabolic Acidosis Normal Acid-Base Alkalosis ABG INTERPRETATION Check pH : Normal or Abnormal? If abnormal, is it acidemia or alkalemia? Check for PaCO2, is it respiratory or metabolic? Check for compensation (same direction) Check for combined acid-base abnormality (opposite direction) Check for oxygenation (room air; supplementation)) HENDERSON-HASSELBACH Base pH = pk + log ------------ Acid HCO3 (Met. 22-26) pH = (6.1) + log ---------------- (7.35-7.45) PaCO2 (Resp. 35-45) HCO3 pH = ----- PaCO2 HCO3 HCO3 pH = ------ pH = ------ PaCO2 PaCO2 Metabolic Acidosis Respiratory Acidosis HCO3 HCO3 pH = ------ pH = ------ PaCO2 PaCO2 Metabolic Alkalosis Respiratory Alkalosis HCO3 HCO3 pH = ------ pH = ------ PaCO2 PaCO2 Uncompensated Partly Compensated Respiratory Acidosis Respiratory acidosis HCO3 N pH = ------ PaCO2 Compensated Respiratory Acidosis HCO3 Combined pH = ------ Respiratory & Metabolic PaCO2 Alkalosis HCO3 Combined pH = ------ Respiratory & Metabolic PaCO2 Acidosis ACID-BASE BALANCE ABNORMALITY COMPENSATION RESPIRATORY ACIDOSIS ↑CO2 ↑HCO3 ALKALOSIS ↓CO2 ↓HCO3 METABOLIC ACIDOSIS ↓HCO3 ↓CO2 ALKALOSIS ↑HCO3 ↑CO2 26 year old female, complaining of dyspnea and chest pain, RR– 30/min pH 7.49 pCO2 30 pO2 98 HCO3 24 Sat 99% Uncompensated Respiratory Alkalosis OXYGENATION AT ROOM AIR Patients < 60 y/o Expected pO2 = 80 –100 mm Hg Patients > 60 Expected pO2 = 80 – ( years above 60) Ex. 70 year-old male Expected pO2 = 80 – 10 = 70 OXYGENATION STATUS Patients < 60 y/o pO2 < 80 = Hypoxemic 80 –100 = Normal > 100 = more than adequate Patients > 60 y/o pO2 < Expected = hypoxemic pO2 = expected = Normal pO2 > 100 = more than adequate Interpretation: OXYGENATION STATUS (ABG TAKEN AT ROOM AIR) Normal Hypoxemia Mild- 60-79 Moderate- 40-59 Severe- 60 years old 400 – ( age above 60 x 5) Ex. 75 yrs old 400 – ( 15 x 5) = 325 DESIRED FiO2 d PaO2 PaCO2 -------- + ------- aAO2 0.8 DESIRED FiO2 = ----------------------- 713 ALVEOLAR-ARTERIAL O2 DIFFERENCE (A-aDO2) ALVEOLAR PO2 = 713(FiO2) – PaCO2/0.8 A-aDo2 = ALVEOLAR PO2 – arterial PO2 NORMAL = < 15 @ 30 y/o and add 3 for every decade above 30 Arterial PO2 (ABG) Aao2 ratio = ------------------------ Alveolar PO2 ( 713 x FiO2 – Pa CO2/0.8) NORMAL = 0.75 CAUSES OF HYPOXEMIA HYPOVENTILATION DECREASED FiO2 V/Q MISMATCH SHUNT DIFFUSION ABNORMALITIES Diagnostic approach to patient with hypoxemia 541 2 Acid-Base Disturbances Metabolic Alkalosis Exogenous steroids GI loss (vomitting, etc.) Renal loss (Conn syndrome, Cushing) Decreased chloride intake Diuretics Bicarbonate administration Contraction alkalosis Acid-Base Disturbances Respiratory Alkalosis Hyperventilation of any cause Anemia Pulmonary embolism Sarcoid Anxiety Pain Acid-Base Disturbances Metabolic Acidosis Anion gap=(Na+K)-(HCO3+Cl) NV= 8-14 Nonanion gap Diarrhea Renal tubular acidosis (RTA) Increased Anion gap Lactate (sepsis, ischemia) Aspirin,Methanol Uremia, DKA INH Acid-Base Disturbances Respiratory Acidosis Hypoventilation COPD Pickwickian syndrome Obesity Suffocation Opiate overdose Sleep apnea