Theory of Structures II Lecture Notes PDF

Summary

These lecture notes from the University of Misan cover the Theory of Structures II. The document explains and demonstrates the virtual work method for determining beam deflections and slopes, with worked examples. Key concepts and formulas are presented to help students in structural analysis.

Full Transcript

Theory of Structures II Prof. Dr. Abdulkhaliq A. Jaafer Lecture 1 Third Stage-University of Misan Lecture 2 Example (2): Find the maximum deflection at free end of the beam shown below. Use the virtual work m...

Theory of Structures II Prof. Dr. Abdulkhaliq A. Jaafer Lecture 1 Third Stage-University of Misan Lecture 2 Example (2): Find the maximum deflection at free end of the beam shown below. Use the virtual work method. Take 𝐸 = 200 𝐺𝑃𝑎 and 𝐼 = 500 ∗ 106 𝑚𝑚4 Solution: Real Moment 𝑥 𝑥2 𝑀 = −𝑤. 𝑥. = −(12) = −6𝑥 2 2 2 Virtual Moment 𝑚 = −1. 𝑥 = −𝑥 Virtual work equation 𝐿 𝑀. 𝑚 1. ∆𝐵 = ∫ 𝑑𝑥 𝐸𝐼 0 10 (−6𝑥 2 )(−𝑥) ∆𝐵 = ∫ 𝑑𝑥 𝐸𝐼 0 10 1 6𝑥 4 ∆𝐵 = [ ] 𝐸𝐼 4 0 15 ∗ 103 ∆𝐵 = 𝐸𝐼 1 Theory of Structures II Prof. Dr. Abdulkhaliq A. Jaafer Lecture 1 Third Stage-University of Misan Lecture 2 15 ∗ 103 ∆𝐵 = = 0.15 𝑚 200 ∗ 106 ∗ 500 ∗ 106 ∗ 10−12 ∆𝐵 = 150 𝑚𝑚 Example (3): Determine the slope at point B of the beam shown in Figure below. Take 𝐸 = 200 𝐺𝑃𝑎 and 𝐼 = 60 ∗ 106 𝑚𝑚4 Solution: Real Moment For segment AB (𝟎 ≤ 𝒙𝟏 ≤ 𝟓 𝒎) 𝑀1 = −3𝑥1 For segment BC (𝟎 ≤ 𝒙𝟐 ≤ 𝟓 𝒎) 𝑀2 = −3 (5 + 𝑥2 ) Virtual Moment For segment AB (𝟎 ≤ 𝒙𝟏 ≤ 𝟓 𝒎) 𝑚𝜃1 = 0 For segment BC (𝟎 ≤ 𝒙𝟐 ≤ 𝟓 𝒎) 𝑚𝜃2 = 1 Virtual Work Equation 2 Theory of Structures II Prof. Dr. Abdulkhaliq A. Jaafer Lecture 1 Third Stage-University of Misan Lecture 2 𝐿 𝑀. 𝑚𝜃 1. 𝜃𝐵 = ∫ 𝑑𝑥 𝐸𝐼 0 5 5 (0)(−3 𝑥1 ) (1)(−3)(5 + 𝑥2 ) 𝜃𝐵 = ∫ 𝑑𝑥1 + ∫ 𝑑𝑥2 𝐸𝐼 𝐸𝐼 0 0 −112.5 𝜃𝐵 = 𝐸𝐼 −112.5 𝜃𝐵 = 200 ∗ 106 ∗ 60 ∗ 106 ∗ 10−12 𝜃𝐵 = −0.00938 𝑟𝑎𝑑 Example (4): Determine the displacement at point D of the beam shown in Figure below. Take 𝐸 = 200 𝐺𝑃𝑎 and 𝐼 = 300 ∗ 106 𝑚𝑚4 Solution: Real Moment ∑ 𝑴𝑪 = 𝟎 → 𝟔 𝑹𝒂 + 𝟏𝟐𝟎 − 𝟑𝟎 ∗ 𝟑 = 𝟎 → 𝑹𝒂 = −𝟓 𝒌𝑵 3 Theory of Structures II Prof. Dr. Abdulkhaliq A. Jaafer Lecture 1 Third Stage-University of Misan Lecture 2 ∑ 𝑭𝒚 = 𝟎 → 𝑹𝒄 = 𝟑𝟓 𝒌𝑵 For segment CD (𝟎 ≤ 𝒙𝟏 ≤ 𝟒. 𝟓 𝒎) 𝑀1 = 0 For segment BC (𝟎 ≤ 𝒙𝟐 ≤ 𝟑 𝒎) 𝑀2 = 𝑅𝑐. 𝑥2 = 35 𝑥2 For segment AB (𝟎 ≤ 𝒙𝟑 ≤ 𝟑 𝒎) 𝑀3 = 𝑅𝑎. 𝑥3 + 120 = 120 − 5 𝑥3 Virtual Moment ∑ 𝑴𝑪 = 𝟎 → 𝟔 𝑹𝒂 + 𝟏(𝟒. 𝟓) = 𝟎 → 𝑹𝒂 = −𝟎. 𝟕𝟓 𝒌𝑵 ∑ 𝑭𝒚 = 𝟎 → 𝑹𝒄 = 𝟏. 𝟕𝟓 𝒌𝑵 For segment CD (𝟎 ≤ 𝒙𝟏 ≤ 𝟒. 𝟓 𝒎) 𝑚1 = −1. 𝑥1 = − 𝑥1 For segment BC (𝟎 ≤ 𝒙𝟐 ≤ 𝟑 𝒎) 𝑚2 = −1(4.5 + 𝑥2 ) + 𝑅𝑐. 𝑥2 = −4.5 + 0.75𝑥2 = 0.75𝑥2 − 4.5 For segment AB (𝟎 ≤ 𝒙𝟑 ≤ 𝟑 𝒎) 𝑚3 = 𝑅𝑎. 𝑥3 = −0.75 𝑥3 4 Theory of Structures II Prof. Dr. Abdulkhaliq A. Jaafer Lecture 1 Third Stage-University of Misan Lecture 2 Virtual Work Equation 𝐿 𝑀. 𝑚 1. ∆𝐷 = ∫ 𝑑𝑥 𝐸𝐼 0 4.5 3 3 𝑀1. 𝑚1 𝑀2. 𝑚2 𝑀3. 𝑚3 ∆𝐷 = ∫ 𝑑𝑥1 + ∫ 𝑑𝑥2 + ∫ 𝑑𝑥3 𝐸𝐼 𝐸𝐼 𝐸𝐼 0 0 0 4.5 3 3 0 (𝑥1 ) (35 𝑥2 ). (0.75 𝑥2 − 4.5) (120 − 5 𝑥3) (−0.75𝑥3 ) ∆𝐷 = ∫ 𝑑𝑥1 + ∫ 𝑑𝑥2 + ∫ 𝑑𝑥3 𝐸𝐼 𝐸𝐼 𝐸𝐼 0 0 0 0 472.5 371.25 843.75 ∆𝐷 = − − =− 𝐸𝐼 𝐸𝐼 𝐸𝐼 𝐸𝐼 −843.75 ∆𝐷 = = −0.0141 𝑚 200 ∗ 106 ∗ 300 ∗ 106 ∗ 10−12 ∆𝐷 = −14.1 𝑚𝑚 Example (5): Determine the horizontal displacement of point C on the frame shown in Figure below. Take 𝐸 = 200 𝐺𝑃𝑎 and 𝐼 = 235 ∗ 106 𝑚𝑚4 Solution: 5 Theory of Structures II Prof. Dr. Abdulkhaliq A. Jaafer Lecture 1 Third Stage-University of Misan Lecture 2 Real Moment ∑ 𝑴𝑨 = 𝟎 → 𝟐. 𝟒 𝑹𝒄 − 𝟔𝟎 ∗ 𝟑 ∗ 𝟏. 𝟓 = 𝟎 → 𝑹𝒄 = 𝟏𝟏𝟐. 𝟓 𝒌𝑵 ∑ 𝑭𝒚 = 𝟎 → 𝑹𝒂 = −𝟏𝟏𝟐. 𝟓 𝒌𝑵 ∑ 𝑭𝒙 = 𝟎 → 𝑯𝒂 = 𝟔𝟎 ∗ 𝟑 = 𝟏𝟖𝟎 𝒌𝑵 For segment AB (𝟎 ≤ 𝒙𝟏 ≤ 𝟑 𝒎) 𝑥1 𝑀1 = 𝐻𝑎. 𝑥1 − 60 ∗ 𝑥1 ∗ = 180𝑥1 − 30𝑥1 2 2 For segment BC (𝟎 ≤ 𝒙𝟐 ≤ 𝟐. 𝟒 𝒎) 𝑀2 = 𝑅𝑐. 𝑥2 = 112.5 𝑥2 Virtual Moment 6 Theory of Structures II Prof. Dr. Abdulkhaliq A. Jaafer Lecture 1 Third Stage-University of Misan Lecture 2 ∑ 𝑴𝑨 = 𝟎 → 𝟐. 𝟒 𝑹𝒄 − 𝟏 ∗ 𝟑 = 𝟎 → 𝑹𝒄 = 𝟏. 𝟐𝟓 𝒌𝑵 ∑ 𝑭𝒚 = 𝟎 → 𝑹𝒂 = −𝟏. 𝟐𝟓 𝒌𝑵 ∑ 𝑭𝒙 = 𝟎 → 𝑯𝒂 = 𝟏 𝒌𝑵 For segment AB (𝟎 ≤ 𝒙𝟏 ≤ 𝟑 𝒎) 𝑚1 = 𝐻𝑎. 𝑥1 = 𝑥1 For segment BC (𝟎 ≤ 𝒙𝟐 ≤ 𝟐. 𝟒 𝒎) 𝑚2 = 𝑅𝑐. 𝑥2 = 1.25 𝑥2 Virtual Work Equation 𝐿 𝑀. 𝑚 1. ∆𝐶ℎ = ∫ 𝑑𝑥 𝐸𝐼 0 3 2.4 (180𝑥1 − 30𝑥1 2 )( 𝑥1 ) (112.5 𝑥2 )(1.25 𝑥2 ) ∆𝐶ℎ = ∫ 𝑑𝑥1 + ∫ 𝑑𝑥2 𝐸𝐼 𝐸𝐼 0 0 1012.5 648 1660.5 ∆𝐶ℎ = + = 𝐸𝐼 𝐸𝐼 𝐸𝐼 1660.5 ∆𝐶ℎ = = 0.0353 𝑚 200 ∗ 106 ∗ 235 ∗ 106 ∗ 10−12 ∆𝐶ℎ = 35.3 mm 7