LEEA Foundation Certificate (Global) Course Workbook PDF

Summary

This document is a course workbook, covering industry definitions, operative roles, and verification for lifting equipment. It is useful for those seeking professional training in lifting equipment.

Full Transcript

LEEA – Foundation Certificate (Global) – Course Workbook Industry Relevant Definitions It is important to have clarity on key industry relevant definitions. Minimum Breaking (or The minimum breaking or failure load is the specified load (mass or Failure) Load force) below which...

LEEA – Foundation Certificate (Global) – Course Workbook Industry Relevant Definitions It is important to have clarity on key industry relevant definitions. Minimum Breaking (or The minimum breaking or failure load is the specified load (mass or Failure) Load force) below which the item of equipment does not fail either by fracture or distorting to such an extent that the load is released. Multipurpose Multipurpose equipment is any equipment designed to a standard Equipment specification to lift a variety of loads up to the marked SWL, i.e., used for general (multi) purposes, and not designed for one specific lifting application. Operative An Operative is a trained person using the equipment. Rated Capacity This is defined as the maximum gross load that the lifting appliance can lift in any given configuration; generally used for lifting appliances in the same way as Working Load Limit is used for lifting accessories. Proof or Test Load A proof or test load is a load (mass or force) applied by the Competent Person for the purpose of a test. This load appears on reports of thorough examination if a proof test has been made by the Competent Person in support of their examination and on test certificates. Note: Proof load tests are also done as part of the verification of new lifting equipment or following installation. Single Single purpose equipment is any equipment designed for and dedicated Purpose to lifting a specific load in a specified manner or working ina particular Equipment environment, i.e., used for a single purpose. Report of Test Report of test, previously known as ‘test certificate’, is a report issued by the competent person who did the test and details the specifics of the test. Test reports are not legal documents allowing the equipment to be used, except when used in support of legal documents such as the EC Declaration of Conformity, ManufacturersCertificate or Report of Thorough Inspection/Examination. Note: new equipment for European or British markets this will be an EC or UK declaration of conformity respectively, or for products placed on other markets a ‘manufacturers certificate’. For older equipment test certificates and certificates of test and thorough examination were used. Previously these were known as a ' birth certificate'. However, all lifting equipment is verified in some way and manufacturers may append the verification details to the declaration of conformity / manufacturers certificate or combine them in a single document. Verification Verification is the generic term used to describe the procedures adopted by the manufacturer or Competent Person to ensure that lifting equipment is to the required standard or specification, meets legal requirements and is safe to operate. This includes proof load tests, sample break tests, non-destructive tests, calculation, measurement and thorough examination. 16 Page © LEEA Academy - FOU (Global) Workbook v 1.6 Jan 2024 LEEA – Foundation Certificate (Global) – Course Workbook Report of a Thorough Examination A report of a thorough examination (also known as a report of thorough inspection or report of periodic inspection) is a report issued by the Competent Person giving the results of the thorough examination, which will detail the defects found or include a statement that the item is fit for continued use. Where the Competent Person has carried out a test as part of the inspection/examination, the report will also contain details of the test. Key Note 1: The report of thorough examination must be retained as part of the lifting equipment records. Key Note 2: In some cases, a reference to the test report appears as an appendix to the thorough examination. Notes: 17 Page © LEEA Academy - FOU (Global) Workbook v 1.6 Jan 2024 LEEA – Foundation Certificate (Global) – Course Workbook Question: Would a proof load test be used as part of a ‘thorough examination’ for lifting accessories? (Select one answer) □ Yes □ No NOTE: Safe (Specific application) Working Load (SWL) The safe working load or specific application load (SWL) is the maximum load (mass) as assessed by a Competent Person which an item of lifting equipment may raise, lower or suspend under the particular service conditions. The SWL is marked on the equipment and appears in statutory records. In some geographical regions, the word ‘safe’ is not used in the description but the requirement is the same, so instead of safe the phrase ‘specific application’ is used instead and the acronym SWL will be used throughout this handbook. Working Load Limit (WLL) The working load limit is the maximum load (mass) that an item of lifting equipment is designed to raise, lower or suspend. In some standards and documents WLL is referred to as ‘maximum SWL.’ This term is more generally used for lifting accessories, but lifting appliances are now commonly marked with a rated capacity. Notes: 18 Page © LEEA Academy - FOU (Global) Workbook v 1.6 Jan 2024 LEEA – Foundation Certificate (Global) – Course Workbook WLL vs SWL Much confusion exists between the terms ‘SWL’, ‘working load limit’ and ‘rated capacity’. By way of explanation, working load limit or rated capacity is the load value assigned to the ‘maximum’ SWL under ideal conditions (by calculation) and in most cases, the working load limit or rated capacity and the SWL will be the same. However, depending upon the conditions of use, it may be necessary for the Competent Person to reduce this to a lower SWL, and it is in these cases that the working load limit or rated capacity and SWL will differ. Risk If the risk assessment of the application indicate that such reduction may be Assessment required, it is essential that the user declares this information at the time of ordering so that the correct SWL may be attributed to the equipment and documentation. In the absence of such a declaration, the manufacturer or supplier will assume that the application is suitable for equipment rated with the SWL equal to the working load limit. If the equipment is in service or the user has not declared this information to the manufacturer, then it is the user’s responsibility to determine and mark the appropriate SWL. Hazardous The conditions where it may be necessary to reduce the working load limit toa Duties lower SWL are HAZARDOUS DUTIES. Hazardous duties could, for example, be environmental conditions such as extremes of temperature, high windspeeds or lifting procedures such as a likelihood of shock loading or inaccuracy of weight. When such circumstances arise, it is essential that systems should be instituted to prevent normally rated equipment from being used to its full capacity. Key Whilst it is the responsibility of the user to take such steps, the following advice Considerations should be considered: ▪ For specific installations where the equipment is fixed permanently in position, the equipment may be marked with the reduced SWL for that specific duty ▪ For specific installations where the equipment is portable, the user should provide written instructions to the operative which include an instruction to use a normally rated piece of equipment (i.e. SWL = WLL) but of appropriately higher capacity thus achieving the same effective reduction ▪ For an industry or a definable section of an industry where the majority of tasks require equipment having a reduced working load, then all the equipment should have a reduced working load i.e. that corresponding to the most hazardous duty 19 Page © LEEA Academy - FOU (Global) Workbook v 1.6 Jan 2024 LEEA – Foundation Certificate (Global) – Course Workbook Controlling Risks Risks Before we delve into more detail, first we have to consider the factors that contribute to accidents / ill-health in the workplace. 20 Page © LEEA Academy - FOU (Global) Workbook v 1.6 Jan 2024 LEEA – Foundation Certificate (Global) – Course Workbook NET RESULT (Risk) = Likelihood x Severity 21 Page © LEEA Academy - FOU (Global) Workbook v 1.6 Jan 2024 LEEA – Foundation Certificate (Global) – Course Workbook Risk Assessment Many workplace activities are inherently dangerous, or they may be given a combination of circumstances. However, no one expects to risk life and limb, or their physical or psychological health, as a consequence of going to work. There is, therefore, a moral duty on employers to take appropriate steps to ensure the safety and health of their employees, and others. Risk assessment is the main means by which this can be effectively planned. Commonly referred to as Job Safety Analysis, Job/Task or Job Safety Review, simply put, this is a careful examination of all potential hazards that could cause harm to people so that a decision can be made as to whether enough precautions are in place, or if further control (precaution) measures need to be established. It is therefore a requirement that the totality of the risks in the workplace have been identified and that a plan is in place to control these. Although slightly different from nation to nation, a common approach to managing risk features a 5-step approach. Step 1: Identify the Hazards This is the process of identifying all the hazards that exist in the workplace. You need to be aware of all the possible hazards, but it is the significant ones that are important. Step 2: Decide Who Might Be Harmed and How This is the process determining who may be at risk from the hazards – the groups of staff and others likely to be affected in the case of an incident involving the hazard. Step 3: Evaluate the Risks and Decide on Precautions This is the process of assessing the significance of the risks and what needs to be done toprotect people. Step 4: Record Your Findings and Implement Them The significant findings of the assessment must be recorded and kept. There should, then, be a record of all hazards, the risks that they present and what precautions are in place to protect people from harm. Step 5: Review your findings The way we work is constantly changing – as a result of new or modifications of existing equipment, building alterations, new procedures, new or modified products, etc. Sometimes systems and procedures get changed by the staff themselves. These all bring their own hazards, but new hazards can also arise in existing methods of work – the effects of stress are a recent example. It is important to continue to be vigilant about hazards and risks and to review workplace conditions regularly. How often is 'regularly' will depend on the extent of the risks and the degree of change. 22 Page © LEEA Academy - FOU (Global) Workbook v 1.6 Jan 2024 LEEA – Foundation Certificate (Global) – Course Workbook Question: When considering people at risk, you only include those carrying out particular activities. (Select one answer) □ True □ False Identifying the precautions (control measures) necessary The first priority for controlling any significant risk to health is to try to avoid or eliminate it completely, i.e. no further risk present. However, this is impossible in many situations, so a hierarchy of control measures is used. Following on from step 3 of our risk assessment process the hierarchy will determine the most effective approach to controlling the risks and the following guide is generally used for this purpose: Eliminate (e.g. through elimination or substitution) Reduce (e.g. time of exposure) Isolate (e.g. segregation, personnel/hazard, lock-out/tag-out etc.) Control (engineering and administrative controls, safe systems of work) PPE (personal protective equipment) Discipline (ensure everyone follows the control measures and procedures in place) 23 Page © LEEA Academy - FOU (Global) Workbook v 1.6 Jan 2024 LEEA – Foundation Certificate (Global) – Course Workbook ▪ ▪ ▪ ▪ ▪ Monitor and Review The safe systems (risk assessment, JSA, JSR etc) need to be regularly monitored to ensure that they are effective. It is often the case that more can be done to further reduce the level of riskas identified through effective monitoring. Just because a system is effective, it does not mean it is having maximum effect. It must also be noted that whilst all personnel involved in work under any specific risk assessment must have received suitable and sufficient information, instruction, training and supervision, this also applies to the supervisory role of those personnel carrying out the monitoring of the safe systems of work in place. Manufacturing of Lifting Equipment ▪ ▪ ▪ ▪ Material Properties Lifting equipment requires a balance of physical and chemical properties to make it suitable for its purpose. 24 Page © LEEA Academy - FOU (Global) Workbook v 1.6 Jan 2024 LEEA – Foundation Certificate (Global) – Course Workbook ▪ Strength: Strength is a measure of how well a material can resist being deformed from its original shape. Typically, metals are specified for their tensile strength or resistance to being pulled apart, but compressive strength is also a legitimate material property describing resistance to being squeezed Ductility: Ductility is a mechanical property that describes the extent to which solid materials can be plastically deformed under tensile stress without fracture Malleability: Malleability is similar to ductility, but it is a material’s ability to deform under compressive stress. A good example of this is the manufacture of wire for wire ropes Brittleness: Brittleness is the tendency of a material to fracture or fail upon the application of a relatively small amount of force, impact, or shock o Brittleness is the opposite of toughness Elasticity: The ability of a material to return to its original dimensions after the removal of stress. A good example of this is a spring 25 Page © LEEA Academy - FOU (Global) Workbook v 1.6 Jan 2024 LEEA – Foundation Certificate (Global) – Course Workbook Plasticity: The ability of a material to retain its new dimensions once the stress is removed. A good example of this is a stretched chain link Toughness: Toughness is the ability of a material to absorb energy and plastically deform without fracturing Hardness: Hardness is a measure of how resistant solid matter is to various kinds of permanent shape change when a compressive force is applied Corrosion: This is the electrochemical oxidation of metals in reaction with an oxidant such as oxygen. Rusting, the formation of iron oxides is a well-known example of electrochemical corrosion. This type of damage typically produces oxide(s) or salt(s) of the original metal 26 Page © LEEA Academy - FOU (Global) Workbook v 1.6 Jan 2024 LEEA – Foundation Certificate (Global) – Course Workbook ▪ Notes: 27 Page © LEEA Academy - FOU (Global) Workbook v 1.6 Jan 2024 LEEA – Foundation Certificate (Global) – Course Workbook Metals Metals are the primary group of materials used for lifting equipment manufacture. Metal is made from metal ores, which have to be mined and processed to transform them into usable materials. Pure metals are usually blended with other metals to change their basic properties. A mixture of metals is known as an alloy. Ferrous: Include steel and pig iron (with a carbon content of a few percent) and alloys of iron with other metals such as molybdenum, chromium and nickel. Non – ferrous: Non-ferrous metal and its alloys do not contain iron in large amounts. The most common type is known as low carbon steel – relatively easy to machine and is quite tough. Inexpensive to produce. Iron and Steel Pure iron is soft and easily shaped. Pure iron is too soft for many lifting equipment uses. Iron from the blast furnace is an alloy of about 96% iron with carbon and some other impurities. It is hard but too brittle for most applications, therefore most iron from the blast furnace is converted into steel by removing some of the carbon within it. This is done by blowing oxygen into the molten metal which reacts with the carbon, in turn producing both carbon monoxide and carbon dioxide which escape from the molten metal. The amount of oxygen used depends on the amount of carbon content required in the finished steel. Carbon steels are produced in several types: ▪ Low carbon steel (MILD STEEL) ▪ Medium carbon steel (HIGHER TENSILE STEEL) ▪ High carbon steel (HIGH TENSILE STEEL) The quantity of carbon present will affect the tensile strength, with the form and distribution ofthe carbon affecting the mechanical properties. Typical amounts are 0.25% -0.33% for Higher Tensile Steel. Mild steel is considered of limited use in the manufacture of lifting gear, i.e. chains and fittings. It is however used to fabricated items, such as grabs, trolleys, spreaders etc. 28 Page © LEEA Academy - FOU (Global) Workbook v 1.6 Jan 2024 LEEA – Foundation Certificate (Global) – Course Workbook Higher tensile steel is used to manufacture chain and fittings, resulting in a product one- third stronger than mild steel and recognised by grade marks 4, 04 or M. High tensile steel has limited use in lifting equipment. The hard-wearing properties do however make it suitable for use in components such as wheel axles and gearboxes. Other metals (alloys) are often added, such as vanadium and chromium which change the physical properties of the steel, such as toughness, ductility, and hardness. Alloy steel is a mixture of two or more elements, one of which is a Alloy Steel metal (e.g. nickel, copper, titanium, chromium, vanadium etc.) which are added to improve the properties such as increased strength, ductility and toughness. The disadvantage of alloy steels compared with carbon steels is that they are usually more difficult to weld, form and machine. Alloys contain atoms of different sizes. These different sizes distort the regular arrangements of atoms. This makes it more difficult for the layers to slide over each other, so alloys are harder than the pure metal. An alloy used in lifting equipment such as wire rope sling securing Copper and its Alloys ferrules. It is also a good conductor of electricity, used in cables. It is also non-magnetic and corrosion-resistant. An alloy of copper and zinc. It has limited applications in lifting Brass equipment. An alloy of copper and tin. The range of alloys can contain anything Bronze up to 18% tin to give the desired properties. It is tough and ductile and has good resistance to corrosion. An alloy containing nickel and copper with small percentages of Monel Metal manganese and iron. Good mechanical properties and excellent corrosion resistance. Monel metal is easily welded (although this is very expensive) and therefore tends to be considered where steel gear cannot be used under any circumstances, such as acidic conditions. Aluminium Aluminium is very light (one third that of steel) and has good corrosion resistance. It has many uses in lifting equipment and its typical uses are jacks, jaw winch casings, hand chain hoist covers, and most notably, for ferrules for wire rope eyes. Mobile Lifting Frames and profiled runway beams are also manufactured from lightweight aluminium extrusions, e.g. light crane systems produced by many manufacturers. Stainless Steel This steel has a minimum of 12% chromium added to improve its corrosion resistance. 29 Page © LEEA Academy - FOU (Global) Workbook v 1.6 Jan 2024 LEEA – Foundation Certificate (Global) – Course Workbook Steel Grades Used in Lifting Equipment The history of material grades is rather complex. They are not in fact material grades but rather product grades. The origin is chain and the grade is the breaking strength of the chain expressed as ‘grade x chain diameter squared. It only works in imperial units so a 1” grade 40 chain broke at 40 x 1² = 40 tons. A ½ “grade 80 breaks at 80 x ½ ² = 20 tons. When chain went metric some companies started using letter grades to make the distinction. Others used an abbreviated number e.g. 4 instead of 40. Coincidentally the mean stress at failure when expressed in N/mm² is almost 10 x the breaking strength in tons derived from the above formula. So imperial grade 80 has a mean stress at failure of approximately 800 N/mm². The mean stress is now used to define the grade. So grade 40 became M or 4, 60 became S or 6 and 80 became T or 8. This has continued with grade 100 being V or 10. 30 Page © LEEA Academy - FOU (Global) Workbook v 1.6 Jan 2024

Use Quizgecko on...
Browser
Browser