9th Grade Pre-Exam Practice Test PDF - Mathematics
Document Details
![ExultantPlumTree](https://quizgecko.com/images/avatars/avatar-7.webp)
Uploaded by ExultantPlumTree
Tags
Summary
This is a 9th-grade mathematics practice test, containing questions on matrices, their operations, and solving systems of equations.
Full Transcript
## 9th Grade Pre-Exam Practice Test **Subject:** Mathematics **Total Marks:** 30 **Class:** 9th **Roll No.:** **Unit#1** **Tick the correct Option. [5]** 1. The order of matrix * (a) 2-by-2 * (b) 1-by-1 * (c) 1-by-2 * (d) 2-by-1 2. If $ \begin{bmatrix} 2 \\ 3\end{...
## 9th Grade Pre-Exam Practice Test **Subject:** Mathematics **Total Marks:** 30 **Class:** 9th **Roll No.:** **Unit#1** **Tick the correct Option. [5]** 1. The order of matrix * (a) 2-by-2 * (b) 1-by-1 * (c) 1-by-2 * (d) 2-by-1 2. If $ \begin{bmatrix} 2 \\ 3\end{bmatrix} x = 0 $ then x=? * (a) 9 * (b) 1 * (c) -1 * (d) -9 3. Which one is square matrix? * (a) 2-by-2 * (b) 1-by-1 * (c) 1-by-2 * (d) Both a and b 4. $ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} $ is called.... * (a) Null * (b) Identity Matrix * (c) Column Matrix * (d) Row matrix 5. The concept of Matrix was given in .... * (a) 1957 * (b) 1858 * (c) 1757 * (d) 1657 **Give answer to any eight short questions of the following.** 1. Find $|D|$ if D=$ \begin{bmatrix} 3 & 2 \\ 4 & 1\end{bmatrix} $ 2. $ \begin{bmatrix} -1 & 2 \\ 1 & 3 \end{bmatrix} $ $ \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} $ Find product. 3. Define transpose of a Matrix. Give example. 4. Differentiate singular and non-singular matrix. 5. Define Skew symmetric matrix. 6. When two matrices are conformable for multiplication. 7. Define rectangular matrix. 8. Find inverse if possible. A = $ \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix} $ 9. If A = $ \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} $ then prove that $(A^t)^t = A$ 10. Find X if $ \begin{bmatrix} 2 & 1 \\ 3 & -3 \end{bmatrix} + X = \begin{bmatrix} 4 & -2 \\ -1 & -2 \end{bmatrix} $ **Give answer in detail of following Questions** 1. Solve the following equations by Cramer's Rule and Matrix Inversion method 4x + 2y = 8, 3x - y = -1