Pearson Edexcel Level 1/Level 2 GCSE (9-1) Combined Science Paper 3 Higher Tier PDF

Summary

This is a Pearson Edexcel GCSE Combined Science Past Paper, covering higher tier topics on materials, energy, and physics. The paper also features physics-related questions.

Full Transcript

Please check the examination details below before entering your candidate information Candidate surname Other names Centre Number Candidate Number...

Please check the examination details below before entering your candidate information Candidate surname Other names Centre Number Candidate Number Pearson Edexcel Level 1/Level 2 GCSE (9–1) Paper Time 1 hour 10 minutes reference 1SC0/1PH   Combined Science PAPER 3 Higher Tier You must have: Total Marks Calculator, ruler, Equation Booklet (enclosed) Instructions Fill Use black ink or ball‑point pen. centrein the boxes at the top of this page with your name, number and candidate number. Answer all questions. Answer the questions in the spaces provided – there may be more space than you need. Information The total mark for this paper is 60. The marks for each question are shown in brackets – use this as a guide as to how much time to spend on each question. structure In questions marked with an asterisk (*), marks will be awarded for your ability to your answer logically, showing how the points that you make are related or follow on from each other where appropriate. A list of equations is included at the end of this exam paper. Advice Read each question carefully before you start to answer it. Try to answer every question. Check your answers if you have time at the end. Turn over *P69478A0120* P69478A ©2022 Pearson Education Ltd. Q:1/ Answer ALL questions. Write your answers in the spaces provided. Some questions must be answered with a cross in a box. If you change your mind about an answer, put a line through the box and then mark your new answer with a cross. 1 (a) Which statement describes conservation of energy in a closed system? (1) A when there are energy transfers, the total energy reduces B when there are energy transfers, the total energy does not change C when there are no energy transfers, the total energy reduces D when there are no energy transfers, the total energy increases (b) A student uses the apparatus in Figure 1 to find out which of two materials, sand or sawdust, is the better insulator. large copper can sand sawdust small copper can Figure 1 The student also has a kettle to boil water, a thermometer and a stop clock. (i) Draw a labelled diagram to show how the student should set up the equipment to investigate which material is the better insulator. (3) 2 *P69478A0220*  (ii) Give three factors that the student must control in this investigation. (3) 1.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 2.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 3.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... (c) Expanded polystyrene, used to insulate buildings, has different densities. Figure 2 shows how the thermal conductivity of expanded polystyrene changes with the density of expanded polystyrene. 45 thermal conductivity 40 of expanded polystyrene in mW / m.K 35 30 10 15 20 25 30 35 40 density of expanded polystyrene in kg/m3 Figure 2 Using the graph in Figure 2, describe how the thermal conductivity of expanded polystyrene changes with the density of expanded polystyrene. (2)................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ (Total for Question 1 = 9 marks) *P69478A0320* 3  Turn over 2 (a) Figure 3 is a speed limit sign from a European motorway. The speeds shown are in km/h (kilometres per hour). 130 110 Figure 3 (i) The sign tells drivers to drive at a slower speed in wet weather. Explain why it is safer for drivers to drive at a slower speed in wet weather. (2)................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ (ii) Show that a speed of 31 m/s is less than a speed of 130 km/h. (2) 4 *P69478A0420*  (iii) The driver’s reaction time is the time between the driver seeing an emergency and starting to brake. A car is travelling at a speed of 31 m/s. The car travels 46 m between the driver seeing an emergency and starting to brake. Calculate the driver’s reaction time. Give your answer to 2 significant figures. (3) driver’s reaction time.............................................................. s (Total for Question 2 = 7 marks) *P69478A0520* 5  Turn over 3 (a) (i) An aircraft starts from rest and accelerates along the runway for 36 s to reach take‑off velocity. Take‑off velocity for this aircraft is 82 m/s. Show that the acceleration of the aircraft along the runway is about 2 m/s2. Assume the acceleration is constant. (2) (ii) Calculate the distance the aircraft travels along the runway before take‑off. Use the equation v 2 – u 2 = 2ax (3) distance =.............................................................. m 6 *P69478A0620*  (iii) Suggest one reason why the length of the runway used is always much longer than the calculated distance that the aircraft travels along the runway before take‑off. (1)........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ (b) (i) The aircraft lands with a velocity of 71 m/s. The mass of the aircraft is 3.6 × 105 kg. Calculate the kinetic energy of the aircraft as it lands. (2) kinetic energy of aircraft =.............................................................. J (ii) When the aircraft has come to a stop, all the kinetic energy has been transferred to the surroundings. Give one way that the energy has been transferred to the surroundings. (1)........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ (Total for Question 3 = 9 marks) *P69478A0720* 7  Turn over BLANK PAGE 8 *P69478A0820*  4 (a) Which of these is a unit of momentum? (1) A kg m/s B kg/m/s C kg m/s2 D kg/m/s2 (b) Students investigate conservation of momentum using two identical trolleys. A card is then added to trolley A. Some of the apparatus is set up as shown in Figure 4. trolley A sticky pads trolley B card runway books Figure 4 (i) Describe an investigation the students could carry out to show that momentum is conserved when these two trolleys collide. You may add to the diagram to help with your answer. (4)................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ *P69478A0920* 9  Turn over (ii) Give a reason for the runway being at a slope. (1)........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ (c) Figure 5 shows a racket and a tennis ball. The tennis ball is travelling towards the racket at a velocity of 8.2 m/s. The ball is hit back in the opposite direction at a velocity of 15 m/s. The ball has a mass of 0.075 kg. The ball is in contact with the racket for 12 ms. (i) Calculate the average force exerted by the ball on the racket. Use the equation mv − mu F= t racket tennis ball travelling 15 m/s away from racket tennis ball travelling 8.2 m/s towards racket Figure 5 (3) force =.............................................................. N 10 *P69478A01020*  (ii) Describe how Newton’s Third Law of Motion applies to the collision between the racket and the ball. (2)................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ (Total for Question 4 = 11 marks) *P69478A01120* 11  Turn over 5 (a) Rutherford devised an experiment to fire alpha particles at thin gold foil. It was found that alpha particles were scattered by the gold foil. The gold foil was about 4.0 × 10–7 m thick. A gold atom has a diameter of about 0.15 nm. Estimate how many gold atoms would fit across this thickness of gold foil. (2) number of atoms =.............................................................. (b) The apparatus that was used in the experiment is shown in Figure 6. fluorescent screen to thin gold foil detect alpha particles 90° 135° 45° alpha particle source 0° most particles detected beam of alpha particles 135° 45° 90° Figure 6 12 *P69478A01220*  (i) The number of particles detected at each angle in a given time is shown on the graph in Figure 7. 107 106 105 number of scattered 104 particles detected 103 102 10 0 20 40 60 80 100 120 140 160 180 scattering angle (degrees) Figure 7 Use information from the graph. Estimate the ratio of the number of particles scattered through 5° to the number of particles scattered through 100°. (2) ratio =.............................................................. *P69478A01320* 13  Turn over (ii) Explain how the difference in the number of particles scattered at different angles gives evidence for the current model of the structure of the atom. (4)................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ 14 *P69478A01420*  (c) Students are given the apparatus shown in Figure 8 and a protractor. marble large sheet of paper with lines 1 cm apart movable slope to roll the marble down circular weight Figure 8 (i) Describe how the students could use the apparatus to model the scattering of alpha particles. (2)................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ (ii) Give one limitation of this model. (1)........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ (Total for Question 5 = 11 marks) *P69478A01520* 15  Turn over 6 This question is about waves in the electromagnetic (e.m.) spectrum. (a) The potential danger associated with the waves of the e.m. spectrum increases as (1) A frequency decreases B frequency increases C velocity decreases D velocity increases (b) (i) A microwave oven uses waves of frequency 2.45 GHz. Calculate the wavelength of the microwaves. The velocity of light is 3.00 × 108 m/s. (3) wavelength =.............................................................. m 16 *P69478A01620*  (ii) The microwave oven is 55% efficient and transfers 42 000 J of energy to some food when it is heated. Calculate the total amount of energy that must be supplied to the oven. (3) energy supplied to oven =.............................................................. J *P69478A01720* 17  Turn over *(c) X‑rays and radio waves are part of the electromagnetic spectrum and have different uses. These radiations are produced in different ways. X‑rays are emitted when electrons within an atom go through energy changes. Radiowaves are produced by electrons in circuits. Compare X‑rays with radio waves. Your answer should refer to the uses of both types of radiation the different ways that electrons are involved in producing X‑rays and radio waves. (6)................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ (Total for Question 6 = 13 marks) TOTAL FOR PAPER = 60 MARKS 18 *P69478A01820*  BLANK PAGE *P69478A01920* 19  Equations (final velocity)2 – (initial velocity)2 = 2 × acceleration × distance v2 – u2 = 2 × a × x force = change in momentum ÷ time ( mv − mu ) F= t energy transferred = current × potential difference × time E=I×V×t force on a conductor at right angles to a magnetic field carrying a current = magnetic flux density × current × length F = B × I × l voltage across primary coil number of turns in primary coil = voltage across secondary coil number of turns in secondaryy coil Vp Np = Vs Ns potential difference across primary coil × current in primary coil = potential difference across secondary coil × current in secondary coil Vp × Ip = Vs × Is change in thermal energy = mass × specific heat capacity × change in temperature ΔQ = m × c × Δθ thermal energy for a change of state = mass × specific latent heat Q=m × L to calculate pressure or volume for gases of fixed mass at constant temperature P1 V1 = P2 V2 energy transferred in stretching = 0.5 × spring constant × (extension)2 E = ½ × k × x2 pressure due to a column of liquid = height of column × density of liquid × gravitational field strength P= h× ρ × g 20 *P69478A02020* 

Use Quizgecko on...
Browser
Browser