Units, Mass, Force, Weight & Basic Definitions PDF
Document Details
Uploaded by Deleted User
Tags
Summary
This document explains the fundamental units used for mass, force, and weight, specifically within the S.I. or International System of Units. It details the units of length, time, and temperature within this system. The document also introduces derived units that use basic units to convey quantities like velocity and acceleration. The document is relevant to a general science and physics course.
Full Transcript
1 T H E UNITS, MASS, F O R C E , WEIGHT & BASIC DEFINITIONS I H.I. Units : Before dealing w i t h the definitions o f such fundamental t e r m s as mass, I n...
1 T H E UNITS, MASS, F O R C E , WEIGHT & BASIC DEFINITIONS I H.I. Units : Before dealing w i t h the definitions o f such fundamental t e r m s as mass, I n n r , weight a n d the principles o f applied mechanisms i t is essential t o e x p l a i n i l i ' ' units used i n this book as they w i l l be the units o f the future n o t o n l y i n this unity b u t also i n o t h e r l e a d i n g c o u n t r i e s. They are k n o w n as S.I. u n i t s. | At present the u n i t s i n o u r c o u n t r y are o f M.K.S. system ; M stands f o r m e t r e 1111 ill of length), K for kilogramme (unit of mass), and S for second ( u n i t o f t i m e ). T h e l e t t e r s S.I. are a n a b b r e v i a t i o n f o r t h e f u l l n a m e Systems international d units ( I n t e r n a t i o n a l System o f U n i t s ). S.I. is the system o f units Introduced by a general conference o f l e a d i n g countries, i n c l u d i n g I n d i a , o n rlxhts a n d measures i n 1 9 6 0. I t is based u p o n m e t r i c u n i t s. A conspicuous 11 1111 re o f S.I. u n i t s is t h e a d o p t i o n o f a u n i t called N e w t o n as a u n i t o f w e i g h t " l li nee. Some o t h e r u n i t s i n S.I. w h i c h a t t r a c t a t t e n t i o n are : Joule ( u n i t o f w o r k or e n e r g y ). Pascal ( u n i t o f pressure) Watt (unit of power) : T h i s u n i t is used n o t o n l y for e l e c t r i c m o t o r s IMII also for i n t e r n a l c o m b u s t i o n engines w h i c h used horse-power as a u n i t so i n In S.I. u n i t s the u n i t h o r s e p o w e r hasno place. Six b a s i c quantities i n S.I. are : Quantity Unit Symbol Mass kilogramme kg Length meter m Time second s Temperature kelvin K Electric c u r r e n t ampere A Luminous intensity candela cd O t h e r units i n S.I. are d e r i v e d f r o m these basic u n i t s. Elements of Mining Technology-3 /1.3 The units, mass, force, weight, & basic definitions/1.2 ii. The u n i t o f pressure, t h e Pascal (Pa), i.e. the pressure p r o d u c e d b y a A "metre per second" is k n o w n as a derived unit because i t measures force o f one N e w t o n a p p l i e d , u n i f o r m l y d i s t r i b u t e d , over a n area o f one q u a n t i t y , speed, i n terms of b o t h e r quantities, l e n g t h a n d t i m e. Units of one m ( 1 N / m ). 1 b a r = 100 k Pa. The value o f standard atmospheric 2 2 area a n d v o l u m e , are also derived u n i t s. pressure, i n t e r n a t i o n a l l y accepted, is 1 0 1 , 3 2 5 N / m. T h i s is v e r y 2 Mass. The u n i t o f mass, kilogramme, is the mass o f a p l a t i - n u m - close to t h e u n i t b a r (b) w h i c h is 1 0 N / m , i.e. 1 0 0 , 0 0 0 N / m. 5 2 2 i r i d i u m c y l i n d e r kept at the I n t e r n a t i o n a l Bureau o f Weights a n d Measures at Meteorologists generally use as t h e i r u n i t the bar, a n d quite often u n i t Sevres, near Paris. As the basic u n i t of mass is k i l o g r a m m e , the w o r d gramme millibar, w h i c h , as the n a m e i m p l i e s , is o n e - t h o u s a n d t h o f a bar. does n o t Fig. i n S.I. u n i t s ; e.g., density o f w a t e r is 100 k g / m. One should not 2 iii. The u n i t o f energy, J o u l e ( J ) , i.e. the w o r k done w h e n t h e p o i n t o f make the mistake o f w r i t i n g i t as 1 M g / m ; i t s h o u l d be w r i t t e n as 10 k g / m , 3 :i 3 a p p l i c a t i o n o f a force o f one N e w t o n is displaced t h r o u g h a distance o r 1000 k g / m. 3 o f one m e t r e i n the d i r e c t i o n o f the force. L e n g t h : The u n i t o f length, the metre, is distance between t w o lines iv. The u n i t o f p o w e r , t h e W a t t ( W ) , i.e. the rate of d o i n g w o r k at one o n a p l a t i n u m - i r i d i u m m bar w h i c h is kept at the I n t e r n a t i o n a l Bureau of j o u l e per second. Weights and Measures at Sevres. The measurment is made at 0°C and standard atmospheric pressure. A l l t h e d e r i v e d u n i t s i n mechanics can be expressed i n t e r m s o f t h e T i m e : The u n i t o f t i m e , the second, is based u p o n the mean sola basic u n i t o f l e n g t h , mass a n d t i m e. For example, day, this b e i n g the average t i m e between successive transits o f the sun d u r i n g ^. Mass Mass M L„-%\ the year. 1 second = 1/86400 o f a mean solar day. Density = — = — = — r = IML I Volume (Length) {hf 3 ' K This t i m e is i n d i c a t e d f a i r l y accurately b y a " q u a r t z " clock or w a t c T e m p e r a t u r e : The u n i t o f t h e r m o d y n a n i c t e m p e r a t u r e , k e l v i n , V e l o c i t y = -fe-' = ( L T " ) 1 the degree i n t e r v a l o n the t h e r m o d y a n m i c scale. The t e m p e r a t u r e o f the ic T freezing p o i n t o f w a t e r o n this scale is 273.15K, c o r r e s p o n d i n g to 0°C o n thj Change i n v e l o c i t y Celsius scale. Conversion f r o m °C to K e l v i n , for a l l p r a c t i c a l purposes : Acceleration = Time Temperature i n K e l v i n = 2 7 3 + t °C The t e m p e r a t u r e intervals o n the Klevin a n d Celsius scale are equ " ( T ) ( T ) - ( T f " 1 ' The sign o f degree (°) is n o t used for K e l v i n. Note: The i n t e r n a t i o n a l definitions o f the metre a n d the second a L, M a n d T denote the dimensions o f length, mass and t i m e respectively. m o r e c o m p l e x a n d are o f o n l y acdemical interest to students a n d readers The S.I. u n i t s are i n d e p e n d e n t o f g, the acceleration d u e to force o f books o n engineering. gravity, a n d are clear i n s t a t e m e n t , f o r example, The S.I. is a coherent system of units. A system of units is coherent the p r o d u c t o r q u o t i e n t o f any t w o u n i t quantities i n the system is the u n i t P ( N e w t o n s ) = M ( K i l o g r a m m e ) x f (m/s ) 2 the resultant quantity. P e r m i t t e d n o n S.I. units. The S.I. System has given a proper allowance A l l o t h e r units i n S.I. are derived f r o m the six basic units m e n t i o n for some n o n - S. I. u n i t s t h a t are i n use f o r a l o n g t i m e a n d have a b e a r i n g w i t h here a n d the c o m m o n l y used derived units are the f o l l o w i n g : MKS system. These u n i t s are p e r m i t t e d because they have c e r t a i n advantages i n p a r t i c u l a r fields, e.g. l i t r e , a t m o s p h e r e (for pressure), °C for t e m p e r a t u r e , i. T h e u n i t o f force, t h e N e w t o n ( N ) , i.e. t h a t force w h i c h w h are some o r t h e p e r m i t t e d n o n S.I. u n i t s. a p p l i e d to a mass o f one k i l o g r a m m e , w i l l give i t an acceleration 1 m/s. 2 The units, mass, force, weight, & basic definitions/1.4 _^ Elements of Mining Technology -3 /1.5 The prefixes attached to t h e u n i t to denote d e c i m a l m u l t i p l e or These p a r t i c u l a r prefixes are g r a d u a l l y f a l l i n g i n t o disuse. s u b m u l t i p l e o f the l a t t e r are as follows : I n t h i s b o o k the practice o f f o r m i n g groups o f t h r e e d i g i t s is n o t Multiplier rigidly adopted. S t a n d a r d for Prefix Abbreviation A t m a n y places i n this b o o k , for conversion of q u a n t i t i e s o f FPS o r One t h o u s a n d m i l l i o n. 10 9 giga G metric system o f units i n t o S.I. units use has been made o f u n i t y brackets ans One m i l l i o n S t r o u d s y s t e m o f c o n v e r s i o n. I n this system, devised by Professor S t r o u d , 10 6 mega M unity brackets are used. Since 6 0 m i n u t e s e q u a l one h o u r , i f w e w r i t e One thousand 10 3 kilo k One h u n d r e d 10 hecto* h 60 m i n 2 t h e n this is called a unity bracket, U n i t y brackets can be w r i t t e n w i t h Ten lh 10 1 deca* da One-teeth IO- deci* d lkN 1000 k N 1 1 min 60 s_ One-hundredth io- 2 ' centi* c either quantity as numerator, e.g. 60 s 1 min 1000 N lkN~ One-millionth io- 6 micro I n m o s t problems, unless the u n i t s of measurement are g i v e n as basic One-thousand m i l l i o n t h io- 9 nano n units, t h e y m u s t be changed i n t o basic u n i t s. Use o f S t r o u d system is c l a r i f i e d T h e 1 2 7 5 0 0 0 N / m = 1275 k N / m = 1.275 M N / m. 2 2 2 in t h e f o l l o w i n g e x a m p l e. I n u s i n g these m u l t i p l e s a n d s u b - m u l t i p l e s , o n l y one prefix s h o u l d Example: be used : thus 1 2 7 5 0 0 0 0 0 0 N / m 2 o r 1.275 G N / m , n o t 1.275 k M N / m. 2 2 Change 7 2 k m / h t o m/s. One t h o u s a n d N e w t o n s have to be w r i t t e n as 1 k N or as 1 0 N. 3 km 1000m 1 h 1 min For n o n - d e c i m a l figures the n u m e r i c a l values are w r i t t e n i n I n d i a as Ans. 7 2 k m / h = 72 1 km 60 m i n 60 s follows : 9 1 4 3 5 7 6 2 is w r i t t e n as 9,14,35,762 720 m since w e have such units as lakh (also w r i t t e n as lac) a n d crore; 1 36s lakh = 100000; 1 crore = 10000000. The m o d e r n practice i n foregin countries Basic terms. is to w r i t e a n u m e r i c a l value i n groups o f three d i g i t s s t a r t i n g f r o m the r i g h t h a n d side w i t h o u t the use o f c o m m a. Thus, the figure 9 1 4 3 5 7 6 2 is w r i t t e n as Mass and weight: 9 1 4 3 5 7 6 2. For w r i t i n g d e c i m a l figures the practice i n B r i t i s h a n d A m e r i c a n Mass is the measure o f q u a n t i t y o f m a t t e r i n a body a n d is a c o n s t a n t books is to f o r m groups of three digits c o m m e n c i n g f r o m the decimal p o i n t o n p r o p e r t y o f t h a t body. The u n i t o f mass i n MKS units as w e l l as i n S.I. u n i t s is the r i g h t h a n d side a n d also o n the left hand side. For example, kilogramme. There is a difference b e t w e e n mass a n d on weight. I f a person h o l d i n g 15692.43 as 15 692.43 a stone i n his h a n d releases his g r i p o n i t , is falls to the e a r t h. C l e a r l y a force 1 0. 5 4 7 3 7 as 1 0. 5 4 7 3 7 m u s t have p u l l e d t h e stone t o w a r d s the e a r t h. This force, w e c a l l a force o f g r a v i t y or g r a v i t a t i o n a l p u l l. We feel this w h e n w e h o l d the stone i n o u r Western countries have such h i g h units as, a m i l l i o n ( 1 0 0 0 0 0 0 ) , a hands. T h e g r a v i t a t i o n a l p u l l acts v e r t i c a l l y d o w n w a r d s a n d the w e i g h t o f a b i l l i o n (1 0 0 0 0 0 0 0 0 0 ) a n d a t r i l l i o n w h i c h is eqvalent to a m i l l i o n m i l l i o n i n b o d y indicates i t. A l l bodies are a t t r a c t t o w o r d s the centre o f the e a r t h b y t h i s America ( 1 0 0 0 0 0 0 0 0 0 0 0 0 ). g r a v i t a t i o n a l p u l l a n d f u r t h e r the b o d y f r o m t h e centre o f the e a r t h , less t h e The units, mass, force, weight, & basic definitions/1.6 Elements of Mining Technology-3 /1.7 p u l l , less is its w e i g h t. A b o d y h a v i n g a definite mass w i l l have less w e i g h t at One N e w t o n is t h a t force w h i c h , w h e n a p p l i e d t o a b o d y h a v i n g a the t o p o f M o u n t Everest t h a n t h a t at the sea level. I f an a s t r o n a u t o n a flight mass o f 1 k i l o g r a m m e , gives i t a n a c c e l e r a t i o n o f 1 m per s e c o n d. 2 to the m o o n carries w i t h h i m a packet o f v i t a m i n pills w h i c h weighs one k i l o - 1 D y n e is t h a t force w h i c h , w h e n a p p l i e d to a b o d y h a v i n g a mass o f g r a m m e o n the e a r t h before the f l i g h t , the packet, assuming t h a t n o t h i n g was I g r a m m e , gives i t a n a c c e l e r a t i o n o f 1 cra/s ( 1 D y n e = 1 0 N ). I t is a very 2 - 5 removed or consumed o u t of it, w i l l have no weight w h e n the astronaut reaches I mall unit. a p o i n t d u r i n g the f l i g h t w h e r e the earth's gravitational p u l l is so negligible as R e a d e r s a c c u s t o m e d t o M K S u n i t s s o m e t i m e s use t h e w o r d. to be zero. I f at t h a t p o i n t i n the space the packet is w e i g h e d b y a s p r i n g " k i l o g r a m m e " w i t h o u t b e i n g specific, w h e t h e r i t refers t o mass o r w e i g h t. balance, the w e i g h t w i l l be zero t h o u g h the mass o f the packet is the same as When w e say "a b o d y o f 1 kg", the statement is n o t clear a n d causes confusion i t was o n t h e e a r t h. As the a s t r o n a u t approaches the m o o n , its g r a v i t a t i o n a l since the mass is expressed i n k i l o g r a m m e a n d the w e i g h t is also expressed i n p u l l w i l l case t h e s p r i n g balance t o record some w e i g h t o f the packet o f kilogramme, i n c o m m o n usage. M a n y of y o u m i g h t have observed the w e i g h i n g v i t a m i n pills, a n d o n the surface o f the m o o n the w e i g h t recorded w i l l be l / 6 t h machine at r a i l w a y stations or i n some d e p a r t m e n t a l stores w h i c h is operated o f the w e i g h t o n the earth, because the g r a v i t a t i o n a l p u l l o f the m o o n is 1/6"' by inserting a 10-paisa c o i n i n a slot o n the machine. You stand o n its p l a t f o r m , t h a t o f the earth. This should e x p l a i n the difference between the terms w e i g h t insert a 10-paisa c o i n a n d w i t h i n a second o r t w o , emerges a c a r d , t h e size o f and mass; The w e i g h t o f a b o d y is the force of gravity o the body. The i m p o r t a n t a r a i l w a y t i c k e t , o n w h i c h is t y p e d y o u r w e i g h t s t a t i n g , say, 60 k g. A c t u a l l y p o i n t t o n o t e is t h a t m a s s is c o n s t a n t b u t w e i g h t is v a r i a b l e. I he w o r d k g o n t h e card is w r o n g. I t s h o u l d be kgf. B u t t h i s indicates h o w The l a t t e r depends o n the place w h e r e the b o d y is s i t u a t e d. I f at a h e i g h t o f loosely the w o r d k g is o f t e n used. say, 4 0 0 k m above the earth's surface, a n astronaut weighs a n a r t i c l e o f mass M k g w i t h a s p r i n g balance a n d the g r a v i t a t i o n a l acceleration at the p o i n t is l k g f is t h e w e i g h t o f a b o d y h a v i n g a mass o f one k i l o g r a m m e. g m/s , t h e w e i g h t o f the article i n S.I. u n i t s , w i l l be M g N e w t o n s. 2 The g r a v i t a t i o n a l force o n a mass o f 1 k i l o g r a m m e , i n N e w t o n s , is the mass o f I kg m u l t i p l i e d b y t h e a c c e l e r a t i o n d u e to g r a v i t y ( i n m / s ). 2 As a l r e a d y stated, a s t a n d a r d piece o f p l a t i n u m - i r i d i u m is k e p t near Paris as a basis f o r the m e a s u r e m e n t o f mass a n d its mass is 1 k i l o g r a m m e. T h u s 1 k g f = 1 k g x 9. 8 1 m/s = 9. 8 1 k g m / s = 9. 8 1 N e w t o n s. 2 2 The masses o f o t h e r bodies are f o u n d f r o m comparison w i t h this standard and T h i s f o l l o w s f r o m t h e basic e q u a t i o n. t h e c o m p a r i s o n is m a d e b y w e i g h i n g. I f a b o d y has a mass d o u b l e t h a t o f the Force = Mass x acceleration standard, t h e force due to gravity a c t i n g o n i t is double the force acting o n the W h e n w e say t h a t a m i n e car weighs 1 tonne, i t means t h a t the w e i g h t s t a n d a r d. Mass is i n d e p e n d e n t o f g r a v i t a t i o n a l p u l l since any v a r i a t i o n i n the of the m i n e car is 1,000 k g f a n d expressed i n S.I. u n i t s t h e w e i g h t is 9 8 1 0 l a t t e r w i l l have a n e q u a l effect o n the s t a n d a r d mass. Newtons. T h i s represents t h e w e i g h t o f a mass o f 1,000 k i l o g r a m m e s. Since T h e f a m i l i a r b e a m balance compares t h e masses o f t w o bodies, a lhe w o r d k i l o g r a m m e - f o r c e (kgf) is used to express w e i g h t ( o r force), i t is k n o w n mass i n one p a n a n d the mass to be compared i n another p a n. A spring ippropriate t o use the w o r d "tonne-force" o r "tonnefe" to express the w e i g h t o f balance, o n the o t h e r h a n d , measures the force i n any d i r e c t i o n. a mass o f 1,000 k i l o g r a m m e s b u t text books r a r e l y use t h e w o r d t o n n e f e. The u n i t o f w e i g h t i n MKS system is k i l o g r a m m e - f o r c e (kgf) a n d i n Rigid Body: S.I. u n i t s i t is N e w t o n ( N ). A b o d y composed o f a very large n u m b e r o f particles whose positions If a m o v i n g body suddenly stops or changes its direction, one concludes lelative to one a n o t h e r d o n o t v a r y is considered to be a r i g i d body. A single t h a t s o m e t h i n g m u s t have caused i t ; i f a s t a t i o n a r y b o d y starts m o v i n g one particle is t a k e n to be a p o r t i o n o f m a t t e r whose d i m e n s i o n s are n e g l i g i b l e concludes that there must be something that caused the motion. This "something" and w h o s e p o s i t i o n m a y therefore be g i v e n as t h a t o f a m a t h e m a t i c a l p o i n t. i n the above t w o examples is Force w h i c h m a y be regarded as t h t w h i c h produces m o t i o n , destroys i t , o r changes the d i r e c t i o n a n d speed o f the dboy. Speed, Velocity and acceleration : A force has m a g n i t u d e , d i r e c t i o n a n d a p o i n t o f a p p l i c a t i o n. The u n i t o f force W h e n a b o d y is i n m o t i o n the rate at w h i c h i t is m o v i n g o n its p a r t h is the same as t h a t o f w e i g h t , viz. k g f in.MKS units a n d N e w t o n i n S.I. units. is called its speed o r velocity. A d i s t i n c t i o n is u s u a l l y m a d e b e t w e e n t h e terms O n the European c o n t i n e n t the s y m b o l k p or kgp (for k i l o p o n d ) is sometimes ipeed a n d velocity. W h i l e speed is d e f i n e d as the rate o n l y at w h i c h a b o d y is w r i t t e n i n place o f kgf. moving, the t e r m velocity implies d i r e c t i o n as w e l l as rate. Velocity is therefore Elements of Mining Technology-3 /1.9 The units, mass, force, weight, & basic definitions/1.8 I f a b o d y moves i n a c i r c u l a r p a t h ( r o t a t i o n a l m o t i o n ) the a n g u l a r a vector q u a n t i t y b u t speed is a scalar quantity. A body moves w i t h u n i f o r m distance moves is measured i n radians a n d the angular v e l o c i t y is i n rad/sec. velocity w h e n t h r o u g h o u t the m o t i o n equal distances are covered i n equal Hie a n g u l a r acceleration is measured i n rad/sec. 2 times, however s m a l l or h o w e v e r large. ,. distance moved Velocity = There are 2n radians i n a circle. (Fig. 1.1.) R.P.M. x — = rad/sec. time taken Rest, motion and velocity are relative terms. Equations of linear and angular motion : M o t i o n o f a b o d y always means its m o t i o n w i t h reference to other For l i n e a r m o t i o n , i f body w h i c h m a y be at rest o r i n m o t i o n. Absolute m o t i o n is impossible to conceive. A l l o u r m o t i o n is w i t h reference to e a r t h w h i c h is supposed to be at u = v e l o c i t y o f a b o d y at start, rest for this concept. W h e n w e say, a t r a i n is m o v i n g at 4 0 k m p h , it means the v = v e l o c i t y o f a b o d y after t seconds, train's speed is 40 k m p h relative to the e a r t h , or the speed w i t h w h i c h it f = acceleration, appears to move to a n observer o n the e a r t h. s = distance covered w i t h i n t seconds, Consider a t r a i n m o v i n g at a u n i f o r m speed o f 30 m/sec. I f the engine puts i n m o r e p o w e r so t h a t the speed of the t r a i n changes, at a steady rate to and f o r a n g u l a r m o t i o n , i f 38 m/sec i n four seconds, the t r a i n has been accelerated by 2m/sec i n each cOj = a n g u l a r v e l o c i t y a t start, second. The acceleration is w r i t t e n as 2m/sec. Acceleration is defined as the 2 co = a n g u l a r v e l o c i t y after t s e c , 2 rate o f increase o f velocity. W h e n a body falls freely u n d e r the action o f earth's g r a v i t a t i o n a l p u l l , i t accelerates u n i f o r m l y ( c o n s i d e r i n g there is no air a = a n g u l a r acceleration resistance) a n d the value o f this acceleration is 9. 8 1 m/sec. The acceleration 2 9 = angle t u r n e d t h r o u g h i n t s e c , d u e t o g r a v i t y is w r i t t e n as g. Decceleration is the opposite of acceleration. A car m o v i n g at a speed of, say, 90 k m / h , i.e. 25 m/s deccelerates a n d reduces t h e n t h e equations are as f o l l o w s : its speed after a p p l i c a t i o n o f brakes a n d m a y e v e n t u a l l y stop. Decceleraion is for linear m o t i o n for a n g u l a r m o t i o n negative acceleration for purposes or calculations. v = u + ft co = co, + a t 2 The acceleration d u e to g r a v i t y varies f r o m place to place o n ourj e a r t h b u t i t varies so l i t t l e f r o m the sea level to M t. Everest, the highest p o i n t v = u + 2fs 2 2 co 22 = co, + 2 a 0 2 o n the e a r t h , t h a t t h e value is considered p r a c t i c a l l y constant and is t a k e n as 9. 8 1 m/s. cJl 1 2 = co, + - a t 2 1 s = ut + - f r 2 A b o d y m o v i n g i n a straight line has a l i n e a r v e l o c i t y a n d i f i t iSi 2 accelerated, i t is subjected to linear acceleration. A body m o v i n g i n a circular p a t h has an a n g u l a r v e l o c i t y a n d its acceleration is a n g u l a r acceleration. Consider a w h e e l r e v o l v i n g a t 1 8 0 r. p. m. = 3 r.p.s. 1 rev = 27i radians. Therefore a n g u l a r v e l o c i t y is 6n rad/sec. A n g u l a r v e l o c i t y o f every part o f t h e w h e e l is the same, b u t t h e l i n e a r velocities o f different parts differ. It is zero at the centre of the shaft a n d m a x i m u m at the periphery o f the wheel. In Fig. 1.2 the angular velocity o f p a r t i c l e P a n d Particle Q is the same b u t the linear v e l o c i t y o f Q is m o r e. The r e l a t i o n b e t w e e n l i n e a r v e l o c i t y V a n d a n g u l a r v e l o c i t y co is. v = tur, w h e r e r is t h e r a d i u s Fifi. 1.1. Arc AB = s = 9 radian x radius. The units, mass, force, weight, & basic definitions /1.10 Elements of Mining Technology-3 /1.11 Example: A t r a i n m o v i n g at 36 k m / h is u n i f o r m l y accelerated so t h a t aft a n g u l a r acceleration = ^ ^ - 9 — — r a d / s 2 8 seconds its velocity is 54 m/s. Find the acceleration i n m/s and the distan 2 4x60 the t r a i n goes i n the i n t e r v a l. = 0.916 rad/s 2 Ans.: u = 36 k m / h. i.e. 10 m/s. 1 2 Since, w , = 0, t h e r e l a t i o n s h i p reduces to 0 = — «= t v = 54 k m / h , i.e. 15 m/s. A n g l e t u r n e d t h r o u g h i n the last t w o m i n u t e s can be calculated i f we To find acceleration : subtract f r o m the t o t a l angle t u r n e d the angular travel i n the first t w o minutes. Using v = u + ft Let t o t a l angle t u r n e d t h r o u g h i n 4 m i n u t e s be 0. Then 15 = 1 0 - 8 f 4 f = -m/s 2.-. 0 = ix0.916x(4x60) 2 v 8 _ 0.916x240x240 To find distance : 2 Using, distance s = average velocity x t i m e = 26380.8 radians 10 + 15 s = x 8 Let angle t u r n e d t h r o u g h i n first t w o m i n u t e s = 0 2 2 = 100 m.-. 9 2 = - x ( 0. 9 1 6 ) x (2 x 60f radians' 1 , A l t e r n a t i v e l y w e c o u l d have used either s = u t + — ft = 0. 9 1 6 x 120 x 60 radians = 6 5 9 5. 2 radians or v - u = 2fs 2 2 Example:.-. Angle t u r n e d t h r o u g h i n t h e last t w o o f the 4 m i n u t e s. A n electric m o t o r s t a r t i n g f r o m rest reaches a speed 2 1 0 0 r.p.m. i n J = 26380.8-6595.2 minutes. W h a t is the angular acceleration i n rad/s and h o w many revolutio: 2 = 1 9 7 8 5. 6 radians are t u r n e d i n the last t w o o f t h e four m i n u t e s. Ans.: 19785.6. 0 1, 0 = r e v o l u t i o n s = 3 1 4 8 rev. 271. Increase in angular velocity Angular acceleration = — = 3149 revolutions. Time taken Initial angular velocity = 0 Example: f i n a l angular velocity = 2 1 0 0 r.p.m. A l i f t is connected to a rope w h i c h w i n d s o n to a d r u m o f a r a d i u s 2 1 00 x 271 r a d / s 4 4 0 m m. The lift accelerates f r o m rest at the rate o f 0.33 m/s for 10s and t h e n 2 60 maintains constant velocity. Calculate the corresponding angular acceleration = 219.9 rad/s and a n g u l a r v e l o c i t y o f the d r u m i n u n i t s o f radians per second. The units, mass, force, weight, & basic definitions /1.12 Ans.: Elements of Mining Technology-3 /1.13 D r u m radius = 4 4 0 m m = 0.44m T h e significance of t h i r d l a w w i l l be clear t o a n y one w h o has t r i e d t o A c c e l e r a t i o n o f the l i f t = 0.33 m / s 2 fire a g u n. As t h e g u n h e l d against t h e s h o u l d e r is fired t h e m o m e n t u m w i t h w h i c h t h e b u l l e t leaves t h e g u n results i n a r e c o i l against t h e shoulder. Let a n g u l a r acceleration o f the d r u m be a r a d / s 2 A n i n t e r e s t i n g a n d significant development based o n this l a w is t h e science of.'. pe w o u l d be ( 9. 8 N - 2 N ) because p a r t o f t h e g r a v i t i o n a l force ( 2 N ) w o u l d I f employed i n accelerating the mass, leaving the r e m a i n i n g 7.8 N counteracted I >y the rope. Fig. 1.2 Fig. 1.2 A. Banking of a curve. Still, or I Upwar- velocity Downward Equilibrium: constant acc" I acc" 2m/seci 2 2m/sec 2 A b o d y at rest is said t o be i n static e q u i l i b r i u m w h e n t h e forces acting o n i t keep i t steady a n d the system o f forces is said to be i n e q u i l i b r i u m. 9.8 N (9.8+2)N (9.8-2)N You m u s t have observed t h e game of t u g of w a r i n w h i c h t w o teams, each o f 9 - 1 1 players, p u l l a r o p e i n opposite d i r e c t i o n s. T h e t o t a l force of each t e a m acts o n the rope w h i c h is therefore subjected t o t w o forces i n opposite directions. W h e n the t w o teams exert equal force o n the rope, i t does n o t move | kg 1kg T b u t r e m a i n s steady. A t t h a t m o m e n t the rope is said t o be i n e q u i l i b r i u m a n d Floor reaction R the t w o forces a c t i n g o n t h e r o p e are s a i d t o be i n e q u i l i b r i u m. T h e forces a c t i n g o n t h e r o p e t r y i n g t o stretch i t , are tensile forces a n d t h e rope is i n Fig. 1.3 Fig. 1.3 (a) tension. A b o d y c a n n o t be i n e q u i l i b r i u m u n d e r the a c t i o n o f a single force, i \ : a n d i f t w o forces act o n a b o d y i t c a n o n l y be i n e q u i l i b r i u m i f t h e forces are of e q u a l m a g n i t u d e b u t act i n opposite d i r e c t i o n s a l o n g t h e same l i n e of A p e r s o n o f 7 0 k g stands i n a l i f t w h i c h moves w i t h a n acceleration of action. lm/s. W h a t w i l l be t h e pressure o n the f l o o r o f t h e l i f t (a) i f i t is a s c e n d i n g , 2 m -» B o w w h o i n t r o d u c e d i t i n 1 8 7 3. I n Graphic Statics, this n o t a t i o n is universally figures t h e r e s u l t a n t o f ab a n d be has t h e same m a g n i t u d e as vector ca b u t employed because i n c o m p l i c a t e d stress diagrams, i t becomes extremely easy the d i r e c t i o n is opposite t o t h a t o f the v e c t o r ca t o locate a p a r t i c u l a r force i n m a g n i t u d e , d i r e c t i o n a n d p o s i t i o n w h e n the — > — » — > n o t a t i o n is a d o p t e d. Bow's n o t a t i o n is i l l u s t r a t e d b y reference t o F i g. 1.15. ab + be = ac Force Polygon : I f m o r e t h a n t w o coplaner forces act at a p o i n t i t is easy t o o b t a i n their resultant b y a d d i n g the vectors as i n d i c a t e d above. I f m o r e t h a n 3 coplaner forces act at a p o i n t and are i n equilibrium they m a y be represented i n m a g n i t u d e a n d d i r e c t i o n b y the side o f a p o l y g o n t a k e n i n order. I f a system o f forces meets at a p o i n t a n d t h a t system is n o t i n e q u i l i b r i u m the p o l y g o n does n o t close, a n d the force n e e d e d t o b r i n g t h e system i n t o e q u i l i b r i u m ( c a l l e d e q u i l i b r a n t ) is represented b y the v e c t o r w h i c h j o i n t s the open ends o f t h e Fig. 1.15 incomplete polygon. Left - Space diagram or position diagram or configuration diagram. D r a w t o a suitable scale, t h e vectors ab, be to represent t h e forces Right - Vector diagram or force diagram F, a n d F i n m a g n i t u d e a n d d i r e c t i o n. The vector ac represents the resultant of 2 (i) With anticlockwise order starting with a F, a n d F (Fig. 1.16). 2 (ii) With clockwise order starting with a The units, mass, force, weight, & basic definitions /1.34 Elements of Mining Technology-3 /1.35 If a set of coplaner force F F , F , F acting at a point O is i n equilibrium, 1} 2 3 4 -*->-» t h e i r r e s u l t a n t R m u s t be zero. Graphically, since t h e resultant is zero, i n t h e force or vector p o l y g o n , the last p o i n t e m u s t fall o n the first p o i n t a so that t h e ab + be = ac (resultant) vector ae is zero, i.e. t h e force p o l y g o n m u s t close. N o w d r a w the vector cd t o represent F i n m a g n i t u d e a n d d i r e c t i o n. 3 A n e x a m p l e o f a p p l i c a t i o n of space d i a g r a m a n d vector d i a g r a m t o T h e n a d = ac + c d = ab + be + c d , i.e. adrepresents t h e r e s u l t a n t of find o u t t h e stresses i n the b o t t o m of a crane a n d its s u p p o r t i n g members is —* i l l u s t r a t e d b y F i g. 1.17. The rope o f t h e crane raises a w e i g h t , W (say 1 k N ). F a n d F, a n d F. Similarly, d r a w the vector de t o represent F t o scale. J o i n 3 2 4 T h e r o p e coils r o u n d a w i n c h i n t h e crane i n d i c a t e d b y "effort". The b o o m is ae. T h e n t h e v e c t o r h i n g e d at i t s base t o the frame o f the crane a n d t h e u p p e r e n d is h e l d i n -»—»—» p o s i t i o n b y a m e m b e r a t t a c h e d t o t h e s t r u c t u r e o f t h e crane. T h e r e l a t i v e ae = a d + de positions o f ropes, b o o m a n d o t h e r s u p p o r t i n g members are as s h o w n i n tjie figure. ac = c d + d e To find o u t the forces i n different m e m b e r s o f t h e crane d r a w a space d i a g r a m as s h o w n i n t h e f i g u r e a n d m a r k o n i t t h e k n o w n forces W, ( 1 k N ) a n d effort ( 1 k N ) s h o w i n t t h e i r d i r e c t i o n s b y a r r o w s. D r a w a v e c t o r d i a g r a m s t a r t i n g w i t h p o i n t a, a n d d r a w ab, be. F r o m a a d r a w a l i n e a d p a r a l l e l t o force Q a n d f r o m c another l i n e c d p a r a l l e t o t h e force P. These parallelines m u s t m e e t at p o i n t t o give a closed figure as t h e system o f forces is i n e q u i l i b r i u m. T h e m a g n i t u d e of the forces Q a n d P can t h e n be measured. A l l the arrows o f the forces i n the vector/force d i a g r a m should f o l l o w a definite order (all clockwise or a l l anticlockwise). The force P i n the b o o m has, therefore to be i n t h e d i r e c t i o n c d a n d the force Q i n t h e t i e , i n t h e d i r e c t i o n da. Fig. 1.16 T h e vector ae represents therefore, i n m a g n i t u d e a n d d i r e c t i o n I r e s u l t a n t R o f t h e coplaner forces F , F , F , a n d F a c t i n g a t t h e p o i n t O. To 2 3 4 o b t a i n its p o s i t i o n o r l i n e o f a c t i o n , t h r o u g h t h e p o i n t O i n Fig. 1.16, d r a w a l i n e p a r a l l e l t o ae, w i t h letters A a n d E o n either side of i t. We have thus o b t a i n e d the resultant R complete i n m a g n i t u d e , d i r e c t i o n a n d p o s i t i o n. Fig. 1.17 I t s h o u l d be clear f r o m t h e foregoing that t o o b t a i n t h e r e s u l t a n t of a system o f coplaner forces acting at a p o i n t , i t is necessary t o d r a w the vectors T h e c o m p o n e n t o f a m a c h i n e o r s t r u c t u r e w h i c h is i n compression is ab, be, c d , etc. t o represent t h e forces t o a suitable scale, i n m a g n i t u d e and called a strut. I f a strut is broken whatever i t supports tends t o collapse i n w a r d s i n t o the s t r u t. The c o m p o n e n t of a m a c h i n e or s t r u c t u r e w h i c h is i n t e n s i o n is d i r e c t i o n. The l i n g j o i n i n g the first p o i n t a t o the last p o i n t e i n t h e vector called a tie. W h a t e v e r a tie supports tends t o f a l l a w a y f r o m i t i f the t i e is d i a g r a m represents the resultant i n m a g n i t u d e a n d d i r e c t i o n. This p o l y g o n of broken. vectors is k n o w n as t h e v e c t o r o r Force P o l y g o n. The units, mass, force, weight, & basic definitions/1.36 Elements of Mining Technology-3 /1.37 Moment of a force : Total c l o c k w i s e m o m e n t Total c l o c k w i s e m o m e n t The moment of a force is defined as the product of the force multiplied by of couple about A o f couple a b o u t B the p e r p e n d i c u l a r distance of the force f r o m the p o i n t about w h i c h i t is acting. = P ( x ) + P ( d - x) = P ( d + y ) - Py I n Fig. 1.18 the m o m e n t o f the force a b o u t the p o i n t O is F x OA = Px + P d - Px = P d + Py - Py w h e r e OA is the perpendicular distance of the l i n e of a c t i o n of force F f r o m the = Pd = Pd p o i n t O. The m o m e n t o f a force m a y be clockwise or anticlockwise as s h o w n i n t h e f i g u r e a n d i t has a W h e n t u r n i n g a spanner, a couple is being exerted a n d the reaction of t u r n i n g effect a r o u n d t h e the n u t o n t h e spanner is equal a n d opposite t o the force a p p l i e d at the e n d o f p o i n t O. The t u r n i n g effect of the spanner. ( T h e r e m u s t always be equal a n d opposite forces a c t i n g ). I n the a force is u s u a l l y called the example i l l u s t r a t e d i n the Fig. 1.20 the l e n g t h of t h e spanner is considered t o turning moment. Other names be the a r m o f the couple a n d the m o m e n t of the couple is 8 0 x 0.200 = 16 N m. given t o t u r n i n g m o m e n t are I t is i m p o r t a n t t o r e m e m b e r t h a t t h e a r m l e n g t h is the p e r p e n d i c u l a r Clockwise Anticlockwise moment, torque and twisting distance. A force c a n have n o t r u n i n g m o m e n t a b o u t a p o i n t , i n its o w n l i n e moment moment moment. of a c t i o n. Fig. 1.18 Moment of force The p o i n t about w h i c h the force t u r n s is called a p i v o t or a f u l c u r m. F = 80N 1. A n y t w o couples o f equal I f a force acts t h r o u g h the p o i n t of r o t a t i o n i t has n o t u r n i n g effect or m o m e n t. m o m e n t i n the same plane are P r i n c i p l e o f m o m e n t states t h a t : I f a b o d y is at rest u n d e r t h e a c t i o n of e q u i v a l v e n t , ie. a couple c a n ) be replaced b y another couple several forces i n the same plane, t h e n the clockwise m o m e n t s about a n y p o i n t m u s t be equal t o t h e anticlockwise m o m e n t s a b o u t the same p o i n t ; o r the Reaction of the same moment, provided = 80N i t h a s be s a m e d i r e c t i o n , r e s u l t a n t m o m e n t o n the b o d y about a n y p o i n t is zero. 200 mm- clockwise, o r anticlockwise. Couple : Fig. 1.20 T w o p a r a l l e l forces, of equal m a g n i t u d e , b u t w h i c h act i n opposite directions, consitute a couple. A t y p i c a l couple is s h o w n i n Fig. 1.19. A person 2. A couple acting on a body a t t e m p t i n g t o open a screwed cap of a b o t t l e exerts a couple o n the cap. c a n o n l y be b a l a n c e d b y A couple is n o t equivalent t o a simple force a n d cannot be replaced b y a single a n o t h e r couple i n the same force. The perpendicular distance between the lines of action of the constituent p l a n e. N o s i n g l e force c a n p a r a l l e l force is called t h e a r m of the couple. I n Fig. 1.19 the forces P, P balance a couple. c o n s t i t u t e a couple a n d d is the a r m o f t h e couple. T h e m o m e n t of a couple, 3. A n y n u m b e r of couples i n also called t u r n i n g effect of the couple, about a n y p o i n t i n its plane is constant t h e same p l a n e acting u p o n a a n d equal t o P x. d. b o d y is equivalent t o a single c o u p l e w h o s e m o m e n t is Let us consider the t u r n i n g equal t o t h e algebric s u m o f effect o f the couple about the moments of the constituent a n y 2 points, A a n d B, as couples. Fig. 1.21 Increasing torque of a spanner by use of s h o w n i n Fig. 1.19 ( i i ). a pipe on the spanner. 4. I f t w o couples a c t i n g n one plane u p o n a b o d y the equal a n d opposite Fig. 1.19 Moment of couple the b o d y m u s t be i n e q u i l i b r i u m. The units, mass, force, weight, & basic definitions/1.38 Elements of Mining Technology-3 /1.39 W h e n a couple acts u p o n a b o d y there c a n n o t be a n y m o t i o n i n a Example: A b e l l c r a n k lever has forces o f 6 0 N a n d 2 0 N a c t i n g as s h o w n i n straight l i n e because the couple has n o resultant force w h i c h w i l l b r i n g about Fig. 1.23. F i n d t h e r e s u l t a n t t u r n i n g m o m e n t o n t h e b e l l c r a n k lever. a m o t i o n i n a s t r a i g h t l i n e. U n d e r the i n f l u e n c e o f a couple a b o d y c a n o n l y Ans,: rotate, i f free, about an axis, t h r o u g h its centre o f g r a v i t y p e r p e n d i c u l a r t o the p l a n e o f t h e couple. Example: A r u l e 2 m l o n g is p i v o t e d at its centre; o n t h e r u l e are 3 forces o f 2 0 N , 5 0 N a n d 3 0 N a c t i n g as s h o w n i n Fig. 1.22. F i n d t h e v a l u e o f force W t o keep t h e r u l e i n e q u i l i b r i u m. Ans.: Let us consider t h e m o m e n t s o f forces a b o u t the p o i n t 0. For the r u l e t o be i n a state w 30 N 20 N 50 N of e q u i l i b r i u m , s u m of O clockwise moments = Fig. 1.23 A bell crank lever. 1—400-^—500—1 s u m o f t h e anticlockwise 1000 -4- 90() - Before a n y m o m e n t c a n be c a l c u l a t e d t h e r i g h t a n g l e d distances f r o m moments. the lines o f a c t i o n o f t h e forces t o t h e p i v o t m u s t b e f o u n d f o r each force. This Fig. 1.22 Distances in mm c a n b e d o n e b y c a l c u l a t i o n as f o l l o w s : IFOB = X S u m of clockwise moments = ( 2 0 x 500) N - m m + ( 5 0 x 900) N-mm... ' y = 55000 N-mm From traingle OAB, = cos 30° 400 Sum of anticlockwise moments = (30 x 400) N - m m + W x 1 0 0 0 N - m m... X = 400xcos30° X = 346.4 m m L o a d W s h o u l d p r o v i d e a n a n t i c l o c k w i s e m o m e n t e q u a l ttoo Y (55,000 - 1 2 0 0 0 ) N - m m = 4 3 0 0 0 N - m m. F r o m t r i a n g l e O C D , — — = cos 30° 5 ' 300 l m x W = 4 3 0 0 0 N - m m = 43 N m ( i n an anticlockwise direction) Y = 3 0 0 x cos 30° Y = 259.8 m m.and W = 43 N N o w c o n s i d e r i n g t h e m o m e n t s a b o u t O, c l o c k w i s e m o m e n t is 2 0 N x X = 2 0 N x 3 4 6. 4 m m = 6 9 2 8 N. m m. Elements of Mining Technology-3 /1.41 The units, mass, force, weight, & basic definitions /1.40 Clockwise m o m e n t = Anticlockwise moments Anticlockwise moment, 60 N x Y = 6 0 N x 259.8 m m = 1 5 5 8 8 N - m m. Resultant m o m e n t o n b e l l c r a n k = 15588-6928 R,., x L s i n 60° = 9 8 1 N x - cos 60° 2 - = 8660 N - m m anticlockwise. Dividing by L Example: 981 N A u n i f o r m bar of mass 100 k g rests w i t h one e n d o n a r o u g h h o r i z o n t a l R „ , s i n 60° = ^ ^ - c o s 60° f l o o r a n d t h e o t h e r e n d against a s m o o t h v e r t i c a l w a l l. F r i c t i o n at t h e w a l l c a n be neglected. F i n d t h e m a g n i t u d e o f t h e r e a c t i o n at t h e w a l l , a n d t h e m a g n i t u d e a n d d i r e c t i o n o f the g r o u n d reaction w h e n the bar makes 60° t o the „ 981N. _ R x 0. 8 6 6 = — — x 0.5 horizontal. Ans.: I f w a l l is s m o o t h i offers n o f r i c t i o n a n d r e a c t i o n R o f w a l l is w = 283.2 N at r i g h t angles t o i t. Fig. 1.24 (Hi) F r o m F i g. 1.24 r e a c t i o n at f l o o r /? = /981 +(283-2) F > 2 2 = ^962361 + 80202 = 1021N Example: A B C D E is h o r i z o n t a l b e a m o f l e n g t h 1 7 m. A B '= 5 m , BC = 2 m , CD = 7 m a n d D E = 3 m. T h e b e a m is s i m p l y s u p p o r t e d at B a n d D , a n d t h e r e are d o w n w a r d loads o f 4 0 0 N , 1 0 0 0 N a n d 6 0 0 N at A , C, a n d E respectively. Fig. 1.24 Calculate t h e u p - w a r d reactions at B a n d D. ( T h e w e i g h t o f the b e a m c a n be neglected). R e f e r r i n g t o F i g. 1.24 ( i i ) , l e t t h e r e a c t i o n Rp at t h e f l o o r has a F i g. 1.25 is a d i a g r a m m a t i c r e p r e s e n t a t i o n o f t h e l o a d i n g. horizontal component H a n d a vertical component V; the horizontal component prevents t h e bar f r o s l i p p i n g W e i g h t of bar = 9 8 1 N a c t i n g d o w n w a r d at its Ans.; centre. I f w e t a k e m o m e n t s about B t h e s u p p o r t i n g force a t B, d e n o t e d b y ^ has n o t u r n i n g effect, a n d w e c a n f o r m a n e q u a t i o n w i t h one u n k n o w n. A p p l y i n g the general c o n d i t i o n s o f e q u i l i b r i u m : Taking m o m e n t s about B, a n d w o r k i n g t h r o u g h o u t i n units of N a n d m. U p w a r d forces = d o w n w a r d forces : 400N 1000N 600N V = 981N ---(1) B c D E Forces t o left = forces t o r i g h t H = R W ---(2) - — — 7 — 1 * 3 * Taking moments about any convenient point, e.g, the foot of the ladder, Fig. 1.25 A beam supported at two points since i t eliminates t w o t u r n i n g effects. The units, mass, force, weight, & basic definitions /1.42 Elements of Mining Technology-3 / I A3 Clockwise m o m e n t s = a n t i c l o c k w i s e m o m e n t s (R A x 6) + ( 1 , 0 0 0 x 6 ) = ( 3 , 0 0 0 x 5) + ( 2 0 , 0 0 0 x 1.5) or R = 6,500 N ( 1 0 0 0 x 2) + ( 6 0 0 x 12) = ( 4 0 0 x ) + ( 1 ^ + 9 ) 2000 + 7200 = 2000 + 9 R Beam wt. D 3000N Distributed lead 1000N 4000N/m 300N/m 9 R = 7200 D 77777/fv/>///77 R D = 800 N RB| 1m -2m- -2.5m- -2.5m- T a k i n g m o m e n t s a b o u t D , R ^ h a v i n g n o t u r n i n g effect. -6m— Clockwise m o m e n t s — a n t i c l o c k w i s e m o m e n t s. -7m- -12m- ( 9 ) + ( 6 0 0 x 3) = ( 4 0 0 x 14) + ( 1 0 0 0 x 7) 9RB = 5 6 0 0 + 7 0 0 0 - 1 8 0 0 Fig. 1.26.-. R3=1200N. Check u p w a r d forces = + R A = 27,600 N Example: d o w n w a r d forces = 2 7 , 6 0 0 N Calculate t h e reactions R a n d A o f the beam as s h o w n i n Fig. 1.26. A n s w e r : R^ 2 1 , 1 0 0 N a n d R A = 6,500 N T h e l o a d o f t h e b e a m per u n i t l e n g t h is 3 0 0 N / m. A d i s t r i b u t e d l o a d o f 4 0 0 0 N / m is p l a c e d over the b e a m as s h o w n. T w o c o n c e n t r a t e d loads o f 3 0 0 0 N Example: a n d 1 0 0 0 N act o n t h e beam as s h o w n. F i g u r e 1.27 shows a shaft m o u n t e d i n bearings A a n d B. T h e w e i g h t of the p u l l e y s a n d shaft are g i v e n. D e t e r m i n e the l o a d o n each b e a r i n g. Ans.: T h e l o a d o f t h e b e a m c a n be r e p l a c e d b y a c o n c e n t r a t e d l o a d a c t i n g Ans.: t h r o u g h its centre o f gravity, o f m a g n i t u d e 3 6 0 0 N. t h e C.G. is 6 m from R. A Let t h e r e a c t i o n s , w h i c h w i l l be e q u a l t o t h e loads o n t h e bearings be S i m i l a r l y the d i s t r i b u t e d load can be replaced b y a concentrated l o a d o f 2 0 , 0 0 0 R andR _. A B N a c t i n g at a p o i n t 4.5 m f r o m R. A T a k i n g m o m e n t s a b o u t B, Taking moments about R A 1 x R A = 4 0 x 0.25 + 1 6 0 x 0.5 + 3 2 x 0.55 + 2 0 x 0.85.-. R A = 10 + 8 0 + 17-6 + 17 Clockwise m o m e n t s — a n t i c l o c k w i s e m o m e n t s.-. R = A 124.6 N. ( 3 , 0 0 0 x 1) + ( 2 0 , 0 0 0 x 4.5) + ( 3 , 6 0 0 x 6) + ( 1 , 0 0 0 x 12) —0.5 Shaft wt = R B x 6 4i 160 N 22L j or 3000 + 90,000 + 21,600 + 12,000 = R x6 2 i j1 or R,, = 2 1 , 1 0 0 N |l60N 20 N t 40 N T a k i n g m o m e n t about R B —0.15—4- 0.30- -0.30- i—0.25 Clockwise m o m e n t s = a n t i c l o c k w i s e m o m e n t s Fig. 1.27 Distances are in meters. The units, mass, force, weight, & basic definitions /1.44 Elements of Mining Technology-3 /1.45 The v a l u e of can be calcualted i n a s i m i l a r w a y by t a k i n g m o m e n t s T h e r e f o r e b y the p r i n c i p l e of m o m e n t s , i n u n i t s of N m , a b o u t A a n d w e get R^ = 1 2 7. 4 N. The loads o n t h e bearings are a p p r o x i m a t e l y equal. W h e n d e s i g n i n g 56257t ( 2 4 0 x 0. 7 5 ) + ( 1 2 x 0. 2 ) = Pr essure x x 0.075 a system i n v o l v i n g l o a d o n b e a r i n g i t s h o u l d be kept i n m i n d that t h e l o a d on 4xl0 6 each b e a r i n g is a p p r o x i m a t e l y the same so that w e a r o n the bearings is nearly equal. 421.87571. (l80 + 2.4)Nm = x pressure N m Example: 4x10 A safety v a l v e o n a s t e a m boiler (Fig. 1.28) is j u s t o n the p o i n t of b l o w i n g o f f steam. W h a t s h o u l d be the steam pressure u n d e r t h e f o l l o w i n g So, Pr essure = 4 x 1 8 2 , 4 x 10 6 N /m 2 = 550.27 k N / m 2 circumstances ? 421.875*: (a) F is the f u l c r u m f o r t h e lever o r a r m o f t h e safety valve. Centre of gravity : (b) D i a m e t e r for t h e s t e a m passage at P is 7 5 m m. The centre of gravity of a b o d y is that p o i n t t h r o u g h w h i c h the resultant (c) T h e lever has a n effective l e n g t h L o f 7 5 0 m m f r o m t h e f u l c r u m and of t h e earth's p u l l u p o n t h e b o d y passes a n d a t w h i c h p o i n t t h e w e i g h t o f t h e w e i g h s 1 2 N. G is t h e p o i n t w h e r e its w e i g h t acts (Centre o f g r a v i t y ) tody c a n be c o n s i d e r e d as c o n c e n t r a t e d. The centre of g r a v i t y is occasionally a n d FG is 2 0 0 m m. referred t o as t h e centre of mass or centroid. For bodies of c o m m o n s y m m e t r i c a l (d) FV is 7 5 m m shapes t h e c e n t r e o f g r a v i t y is easily f o u n d o u t a n d is at f o l l o w i n g p o i n t s. W e i g h t W p l a c e d o n t h e l e v e r l is 2 4 0 N. A square or a rectangle : T h e i n t e r s e c t i o n o f d i a g o n a l s. Ans.