Document Details

TopNotchPine

Uploaded by TopNotchPine

Miami University

Tags

enzymes catalysis biochemical processes kinetics

Summary

The document covers the concepts of enzyme kinetics, catalysis, and their involvement within complex biochemical processes, providing details on enzyme function, reaction pathways, and factors influencing catalysis.

Full Transcript

Chapter 8 complexbrothemilal processes enzymekinetics transport enzymes arecatalysts roysi fE.tl qtahsteproaucts Et useArrhenius ean K Aexp 2...

Chapter 8 complexbrothemilal processes enzymekinetics transport enzymes arecatalysts roysi fE.tl qtahsteproaucts Et useArrhenius ean K Aexp 2 Ae Yated collision productivity RFform freeenergy E sittin.fi satalyzedextentotrxn p cataustscant.ee e gna iI IE ssoneansames.net purificationisolationiseasy difficulttopurityisolate Slower hardtostudy taster easytostudy ave to samephase ex car'scatalyticconverter oxidation 2 co 02 2002 Efts In 2h59am.tnattoncatalys reduction 2NOx X02 Nz for 90 responsible PEPPE plastics coNOxresponsibleforsmog enzymes runsoccurat surfaces V17 Istiteftrateonwaterspits G.la Enav IthfmPegelgmpusion actonsubstrates 2H20 2H20 02191 uncatalyzed Ea 76k mot rate kself Ea.ie Iff Hot H2o 302 Host H2o k Hot 4202 ˢe I Asen At e.at eent e EEEI heart ex Ef e acidcatalysis Ht transfertosubstrate e 2200 basecatalysis Ht transfer fromesubstrate michaelis menten enzyme kinetics enzymes arehomogenouscatalysts act onsubstrate forgiven S initial rate α E me fathers forgiven E and Low S o rate S forgiven E andHIGH SJo rate independentof ST never see in small m catalysis reaching max velocity Vmax productinhibition it afterinductionestabilization connecomes constant n substratfing v KEES steady state approx intermediate conc becomes constant 7T I E s K_CES K2 ES 0 ES 1,92 define km 1 2 Efs css.su EE EE iE EYicsa c E ETO CES S STO ES 530 v Races CEJO v K2 umax at Vmax allenzymemesarecomplexed w substrate E ES I 1 1 ftp low s v K2 E CS Easymente Gwen Kee α to so misha stocky high s o v Vmax K2CE v Y t.itvmax vmtaxt vExlts tax i FI slope S TE Ka bindingaffinityfor S mania tone iii viii KCAT turyver frequency WIFE tovanenzyme YET Vmax KCE left catalyticeffinency KEI 122 when k2 kr n k max efficiently everybindingeventleadsimmediatelytoprodut K represents E e s diffusingtoeachother propto D diffusionloef fastestdiffusion D 109m s t catalase n 4 108 m t s t carbonicanhydrase n 1 108m 15 enzymeinhibition inhibitorsmakeenzymesslower bybindingto Eor ES e blockingproductformationrelease E S 1 ES ETP direct E I EI KI FEET ES I FESI KI CELET msn.EEEEagt sman kEE moreeffective inhibitor KI islargeweak a t.sn g titi EE.intiesa uniompetitive I binds ES awayfromactivesite 12 parallel Eff E name aie O'uninhibited Ex tax So maji's 4km i.in aiii entsiope It tax That 55 non competitive α L 1 I bindsto E or ES dand α awayfromaltivesite everythingchanges ly int e slope sequential runs e ethylene biosynthesis by Accoxidase Felman with s.rs E P the fh tme i aÉhtEEigtyi.caetpresetexaudeit ordered binding s.IE hymnastoEs ES S F ES S Kmr cE s It randombinding two more equilibria haveto be inlluded Ets I ES km ES s I ES sa Kna c line weaver burk I end 523 65230 Itrandom binding is included 17 91519295 holding 523 f qygg.fi cfg ikmatcsi3o pingpong runs two substrates givetwo products twodifferent States of the enzyme react one with each substrate ex innudeproteases Ros determiningenzymes ex superoxidedismutase ALS 02 Ets FES P km E v kf CES LE E 52 E 52 E S2 E P Ka I v kf oneofthese is ratelimiting one isfasterthan the other It we assume that 2ndstep is Rpg 2T Ensign Jesa Gdependson S slopedoesnot inc S transport controlled bydiffusion passive diffusionalong aconc gradient active ATP driven diffusionagainstgradient amnt material unit time unit length rate of diffusion is α to fluxt J I Im Elonigradient p.is coef diffusion 106m21s 919017 4 s sucrose 0.52 m movgwhat no Hin 502 mon onone more can't hydrogenbond canhydrogenbond 0.04 0 10 m s virus 0.01m s protein nm nooonm diffusion shows Arrhenius behavior K A exp 7 KT k energy D Doexp 2 off stokes enssive rect correlation to motenarsize faith radius asraaiust.pt electrophoresis partives also diffusebasedoncharge protein DNA lets negativecharge aenaittipyff.io soluble in water NÉ t movetowardoppositepoleat its deflates Guotapfied 1 61 52 a mobility radius zichargeonion e electric charge n viscosity a radius Chapter 9 TYenaminn Q.ua degreesof freedom13N ofatoms 3 1 translation motion in x y z orlinear combinations of x yz 2 rotation in x y z orlinearcomb of x x t 3 vibration ofatoms 131 1 atomicstructure MM principal nonzerointeger ex p l 1 l azimuthal angularmomentum me t s 0 p I D 2 F 3 me magnetic e e t e 2 e ms e spin quantumtheory relates matter to energy or particle to light iiiiiiiiiiiii.is note the gap between Avogadro planck during that time severalexperimentsforced re examinationof our understanding of matter 8 Eti atoms penaffafalites Fitnot fromclassical behavior at lowtemp blackbodyradiation doesn'tmattermaterial temp willchangecolor ex red orange yellow 49thling can have anfrequencies atoms vibrate at all possiblefreq atomic vibrations at freq v radiation at trea V energy evenly distributedamongfreq Rayleigh Jeansformula no max at A workswellenoughatlarge RayleighJeans f needforbettertheory enangy inm anyoscillatorcanhave any trea α KT P Enoscillatorshowsonlydiscreteenergiese nhv byBoltzmannpopulations weighted not allfreq available onlydiscrete v possible hw E hv x rays vv vis IR mW 400ingyptnybm I 13 asset eqsg.EE room approachesrayleighseans h Plank's constant 6 626 10 34J s energydensity total ECT at xs TYE I t line spectra of atoms I spectroscopy III misistfnapalavantum sharp discreteemission lines DE nv energiesofatomsmolecules aredistrete quantized Photentin's fariannice a has X and V thereforeenergy shinelightwith suffilient energy on a metal it will eject e no e below element specificenergy kinetic energy of ejected e increases linearlywith incphotonenergy trea even atverylowintensityofincidentlight e ejectedfor us min WILIEÉEE intensity αmeansproportionalto found e ejectedabovethreshold E independentofintensity excess energy from the incidentphoton DE hor n v min hv 0 becomes kinetic energyofphoto e E hv 0 2mv2 characteristic energy Eneededto eject e ex Rb Kr 55 1334s ionizationenergy 0for monatomicspecies photoelectric effect established matter like properties of light waves Rutherford II regularspacing of e Het α atom ismostlyemptyspace nuclearmodel a puppy Davisson e Germer e a e e diffraction bouncing otte changingdirection wave nature of e e behaving likelight particles with mass o MSffering is a result ofphotonmomentum Δ Xf X m sin E teggy.my photonmomentum particlenatureoflight EE If 2 as vapproamesc forphotonwith E hr and m 0 E p2 2 2 Pg Gp it momentumspeedoflight I DeBroglie I anthings have a wavelength if everythinghasmomentum then it has 5 95 x I I g polymis 10 35 m Bohrmodeloftheatom e moving inorbitsaroundnucleus addthingsoutofphase cangotozero e travel in standingwaves cont starting where it ends always in phasewith itself willnever go to zero in phase constructive interference out ofphase destructive interference notequaltonhut problems nostaticsystemchargedparticles can exist at ealbrm e must bemoving travel in orbits 1,1 it e it t.it i Ebiitce tes e moves in a circular orbit stopmoving e goes constantlybalancing Ek e Ep straightto nucleus too fast e flies off E Ect Ep 0 Ek Ep stabilityrequires nv TIE staff Z atomic protons e electric charge 1 6 10 c N reducedmass 4HEo permitivity of freespace Mh1g abilityofvacuum topass e charge ex Hatom pt e 1 do Bohrradius 0.53A N mmpYf mmhg me hydrogenatomradius angularmomentumis alsostandingwave Nvr n't Planck'sconstant WI r t r Ev it retina r ETI 90 Bohrworks wellfor Jones wenone w IT inaaaanaes I wanttodevelopan analogous ean based on wavenature of matter mathematical operators A perform themathematicaloperationon what is to myright ex Ax whathappensto A occurstoterm after EEifaener.gg 4 te orbital x y z v41 v y v t t mysigned time f a wavefunction Etotal Ekinetic Epotential 9 IEtot nam.it o totourparnane mV V X uh Ekinetic 54 p 2 2 Epotential Fix t 4 I En Ep 4 awamin.EEnttmEiteasaeem ex 1 4 sin or cosy can take 2ndderiv e getoriginalfunction sinrodinger men Eye Hemmeratais EEE yes ayy inbothwave e matrixmechanics order ofappellation is important x̅ fix implies p determine fix 2 1 I 11942 2 multiplyby x̅Pxf Ix m 102 position x̅ x 4 nd miiininneyi.IE I imaginary Heisenberg Showedposition x̅ e momentum Px don'tcommute if operatorscommute o orderdoesn'tmatter moment I I canknowbothIpos e mom toequalaccuracy restatesNewton's2ndlaw as anapprox opertatisa'off minute to directlycorrelatesto complimentary observables anypairof complimentary observablesobeys theHeisenberguncertaintyprinciple Δ pox 2h the more accuratelyyouknow one lessaccuratelyyouknowthe other energy e time are complimentaryobservables ΔE At t he hovot h Is avot impartonspectroscopy In IE Emtan'swaves properties of 4 analogyto light Ios wet Bsin lutt w 2tr every2H backto same place If 4 can be o co imaginary 9ⁿtY 5 AcosLW Bsintwe os tl intens.EE h B2sin2ltbrob.a tound protegee intensityoflightwave α it 432 intensity of 4 100 probwhenpositionisincludedoffinding photoninregionofspace P Y peak meanofhighestfreq testify eternity 42 4 4 iompley.lt AeikX tY 21 u.ae.im f ti eEinht FIii snowswnywea 42 Y Ydx numericalprobability onedimension in 3D 1 1 4 4axdydz probability normalitation there is a constant N such that it 4 EY FI NY E f Nx IN4 dxdydz must exist somewhere f Nx NY dxdydz 1 Nz 54 4axdydz 1 probabilitiesarethepowerof 4 4dx dy dz quantummechanics responsibleforprob 1001 Z cartesian polar r o'd rsino cost rsinosino rooso y r distancefromorigin tipawayfrom t angle withrespectto x axis 712 3H12 Nx INYaxdydz 1 Nz 54 4axayat N2 4 4ax du at N2 4 4rarsinododd N 194 4rarftsmodofTT ctosol.to N 4 4 rdrl ex Hatomis 4 519 42 etha ma a Bohrradius 1N 1 4 4rear Isinodo do 0 53A 1 121 52590 rear 4H 4T 21 5 1 1111 integral familiarformthatpeople soneator' lixmeaxax at2r1a.gr fr2 Staintegral 2 a 2 13 13 NE.is N TI N27903 1 2 N G U NY 42 e 2190 4 Yardodd limitson 4 singlevalued onlyoney peronex tf us ont I resultoftheseconditions 5909 E isrequiredto 7529191 normalizationconstantgoesto a if true bequantized normalizable nowwhat Ay 12 1 uh 4 IsaEmel lafferent set v4 freemotionin onedirection 4 It E4 Y Aeik Beak HY talk Aeik BE Ems Aeik Be 1kt Em ikaeikxtliklbe.tk Ffm ick Ae ik BÉKY FI 1 2 At 2 BE KE Aeik BEAKY II Y forparticle wave E M E AB o movingin onedirection

Use Quizgecko on...
Browser
Browser