Chapter 5: Process Synchronization PDF

Document Details

AppreciativeGroup6564

Uploaded by AppreciativeGroup6564

Zagazig University

2013

Tags

process synchronization operating systems concurrency computer science

Summary

This document is chapter 5 from Operating System Concepts – 9th Edition, focusing on process synchronization. It introduces concepts like the critical-section problem and various synchronization mechanisms. The content provides an overview of different approaches used for coordinating the execution of concurrent processes, making it a useful resource for computer science students.

Full Transcript

Chapter 5: Process Synchronization Operating System Concepts – 9th Edition Silberschatz, Galvin and Gagne ©2013 Chapter 5: Process Synchronization Background The Critical-Section Problem Peterson’s So...

Chapter 5: Process Synchronization Operating System Concepts – 9th Edition Silberschatz, Galvin and Gagne ©2013 Chapter 5: Process Synchronization Background The Critical-Section Problem Peterson’s Solution Synchronization Hardware Mutex Locks Semaphores Classic Problems of Synchronization Monitors Synchronization Examples Alternative Approaches Operating System Concepts – 9th Edition 5.2 Silberschatz, Galvin and Gagne ©2013 Objectives To present the concept of process synchronization. To introduce the critical-section problem, whose solutions can be used to ensure the consistency of shared data To present both software and hardware solutions of the critical-section problem To examine several classical process-synchronization problems To explore several tools that are used to solve process synchronization problems Operating System Concepts – 9th Edition 5.3 Silberschatz, Galvin and Gagne ©2013 Background Processes can execute concurrently  May be interrupted at any time, partially completing execution Concurrent access to shared data may result in data inconsistency Maintaining data consistency requires mechanisms to ensure the orderly execution of cooperating processes Illustration of the problem: Suppose that we wanted to provide a solution to the consumer- producer problem that fills all the buffers. We can do so by having an integer counter that keeps track of the number of full buffers. Initially, counter is set to 0. It is incremented by the producer after it produces a new buffer and is decremented by the consumer after it consumes a buffer. Operating System Concepts – 9th Edition 5.4 Silberschatz, Galvin and Gagne ©2013 Producer while (true) { while (counter == BUFFER_SIZE) ; buffer[in] = next_produced; in = (in + 1) % BUFFER_SIZE; counter++; } Operating System Concepts – 9th Edition 5.5 Silberschatz, Galvin and Gagne ©2013 Consumer while (true) { while (counter == 0) ; next_consumed = buffer[out]; out = (out + 1) % BUFFER_SIZE; counter--; } Operating System Concepts – 9th Edition 5.6 Silberschatz, Galvin and Gagne ©2013 Race Condition counter++ could be implemented as register1 = counter register1 = register1 + 1 counter = register1 counter-- could be implemented as register2 = counter register2 = register2 - 1 counter = register2 Consider this execution interleaving with “count = 5” initially: S0: producer execute register1 = counter {register1 = 5} S1: producer execute register1 = register1 + 1 {register1 = 6} S2: consumer execute register2 = counter {register2 = 5} S3: consumer execute register2 = register2 – 1 {register2 = 4} S4: producer execute counter = register1 {counter = 6 } S5: consumer execute counter = register2 {counter = 4} Operating System Concepts – 9th Edition 5.7 Silberschatz, Galvin and Gagne ©2013 Race Condition A race condition in operating systems (OS) occurs when two or more processes or threads try to access shared resources simultaneously, and the final outcome depends on the timing of their execution. It often results in unpredictable behavior, errors, or bugs, as processes interfere with each other in an unintended way. Operating System Concepts – 9th Edition 5.8 Silberschatz, Galvin and Gagne ©2013 An Example To Illustrate A Simple Race Condition Imagine a bank account that is shared between two users (threads). The balance starts at $100. balance = 100 # initial balance def deposit(amount): global balance balance += amount def withdraw(amount): global balance balance -= amount Operating System Concepts – 9th Edition 5.9 Silberschatz, Galvin and Gagne ©2013 An Example To Illustrate A Simple Race Condition Two threads running at the same time: 1.Thread 1 (Deposit): Wants to deposit $50. 2.Thread 2 (Withdraw): Wants to withdraw $30. Both threads will interact with the balance variable, which is shared. Operating System Concepts – 9th Edition 5.10 Silberschatz, Galvin and Gagne ©2013 An Example To Illustrate A Simple Race Condition Possible Execution Flow (Without Synchronization): 1.Thread 1 reads the balance (100). 2.Thread 2 reads the balance (100). 3.Thread 1 adds $50 to the balance (100 + 50 = 150). 4.Thread 2 subtracts $30 from the balance (100 - 30 = 70). 5.Final balance: $70 (incorrect). Operating System Concepts – 9th Edition 5.11 Silberschatz, Galvin and Gagne ©2013 Critical Section Problem Consider system of n processes {p0, p1, … pn-1} Each process has critical section segment of code  Process may be changing common variables, updating table, writing file, etc  When one process in critical section, no other may be in its critical section Critical section problem is to design protocol to solve this Each process must ask permission to enter critical section in entry section, may follow critical section with exit section, then remainder section Operating System Concepts – 9th Edition 5.12 Silberschatz, Galvin and Gagne ©2013 Definitions The Critical Section Problem in Operating Systems refers to a situation in which multiple processes or threads attempt to access shared resources concurrently. The problem is specifically concerned with ensuring that the critical section of code (where shared resources are accessed) is executed safely without conflicts, data corruption, or race conditions. Operating System Concepts – 9th Edition 5.13 Silberschatz, Galvin and Gagne ©2013 Definitions Critical Section: A part of the code where a shared resource (like memory, files, or devices) is accessed or modified. Race Condition: Occurs when two or more processes or threads try to change shared data at the same time, leading to inconsistent or incorrect results. Shared Resources: Resources that can be accessed by multiple processes (e.g., variables, files, hardware devices). Mutual Exclusion: Only one process at a time can execute in the critical section, preventing conflicts. Operating System Concepts – 9th Edition 5.14 Silberschatz, Galvin and Gagne ©2013 Critical Section General structure of process Pi Operating System Concepts – 9th Edition 5.15 Silberschatz, Galvin and Gagne ©2013 Algorithm for Process Pi do { while (turn == j); critical section turn = j; remainder section } while (true); Operating System Concepts – 9th Edition 5.16 Silberschatz, Galvin and Gagne ©2013 Solution to Critical-Section Problem 1. Mutual Exclusion - If process Pi is executing in its critical section, then no other processes can be executing in their critical sections 2. Progress - If no process is executing in its critical section and there exist some processes that wish to enter their critical section, then the selection of the processes that will enter the critical section next cannot be postponed indefinitely 3. Bounded Waiting - A bound must exist on the number of times that other processes are allowed to enter their critical sections after a process has made a request to enter its critical section and before that request is granted  Assume that each process executes at a nonzero speed  No assumption concerning relative speed of the n processes Operating System Concepts – 9th Edition 5.17 Silberschatz, Galvin and Gagne ©2013 To sum up: 1.Mutual Exclusion: Only one process can be in the critical section at any time. 2.Progress: If no process is in the critical section, the decision of which process to enter should be made fairly and without delay. 3.Bounded Waiting: Each process should get a chance to enter the critical section within a finite amount of time. The mutex or other synchronization mechanisms ensure these properties are met, allowing multiple processes to work safely with shared resources. Operating System Concepts – 9th Edition 5.18 Silberschatz, Galvin and Gagne ©2013 Critical-Section Handling in OS Two approaches depending on if kernel is preemptive or non- preemptive  Preemptive – allows preemption of process when running in kernel mode  Non-preemptive – runs until exits kernel mode, blocks, or voluntarily yields CPU Essentially free of race conditions in kernel mode Operating System Concepts – 9th Edition 5.19 Silberschatz, Galvin and Gagne ©2013 Peterson’s Solution Good algorithmic description of solving the problem Two process solution Assume that the load and store machine-language instructions are atomic; that is, cannot be interrupted The two processes share two variables:  int turn;  Boolean flag The variable turn indicates whose turn it is to enter the critical section The flag array is used to indicate if a process is ready to enter the critical section. flag[i] = true implies that process Pi is ready! Operating System Concepts – 9th Edition 5.20 Silberschatz, Galvin and Gagne ©2013 Algorithm for Process Pi do { flag[i] = true; turn = j; while (flag[j] && turn = = j); critical section flag[i] = false; remainder section } while (true); Operating System Concepts – 9th Edition 5.21 Silberschatz, Galvin and Gagne ©2013 Peterson’s Solution (Cont.) Provable that the three CS requirement are met: 1. Mutual exclusion is preserved Pi enters CS only if: either flag[j] = false or turn = i 2. Progress requirement is satisfied 3. Bounded-waiting requirement is met Operating System Concepts – 9th Edition 5.22 Silberschatz, Galvin and Gagne ©2013 Synchronization Hardware Many systems provide hardware support for implementing the critical section code. All solutions below based on idea of locking  Protecting critical regions via locks Uniprocessors – could disable interrupts  Currently running code would execute without preemption  Generally too inefficient on multiprocessor systems  Operating systems using this not broadly scalable Modern machines provide special atomic hardware instructions  Atomic = non-interruptible  Either test memory word and set value  Or swap contents of two memory words Operating System Concepts – 9th Edition 5.23 Silberschatz, Galvin and Gagne ©2013 Solution to Critical-section Problem Using Locks do { acquire lock critical section release lock remainder section } while (TRUE); Operating System Concepts – 9th Edition 5.24 Silberschatz, Galvin and Gagne ©2013 test_and_set Instruction Definition: boolean test_and_set (boolean *target) { boolean rv = *target; *target = TRUE; return rv: } 1. Executed atomically 2. Returns the original value of passed parameter 3. Set the new value of passed parameter to “TRUE”. Operating System Concepts – 9th Edition 5.25 Silberschatz, Galvin and Gagne ©2013 Solution using test_and_set() Shared Boolean variable lock, initialized to FALSE Solution: do { while (test_and_set(&lock)) ; lock = false; } while (true); Operating System Concepts – 9th Edition 5.26 Silberschatz, Galvin and Gagne ©2013 Test_and_set() The general behavior of test_and_set() is as follows: 1.Test: The function checks the value of a specified memory location (usually a flag or lock variable). 2.Set: It then sets this memory location to a specific value (usually true or 1). 3.Return Old Value: The function returns the old value of the memory location. Operating System Concepts – 9th Edition 5.27 Silberschatz, Galvin and Gagne ©2013 Test_and_set() In operating systems, test_and_set() is often part of the low-level mechanisms for implementing synchronization primitives such as: Spinlocks: Simple locks that continuously check if a resource is available, and if not, keep checking until they acquire it. Mutexes: Similar to spinlocks but with additional features like blocking and waiting. Atomic operations: Ensures that certain operations on memory are done atomically, preventing issues in concurrent environments. Operating System Concepts – 9th Edition 5.28 Silberschatz, Galvin and Gagne ©2013 compare_and_swap Instruction Definition: int compare _and_swap(int *value, int expected, int new_value) { int temp = *value; if (*value == expected) *value = new_value; return temp; } 1. Executed atomically 2. Returns the original value of passed parameter “value” 3. Set the variable “value” the value of the passed parameter “new_value” but only if “value” ==“expected”. That is, the swap takes place only under this condition. Operating System Concepts – 9th Edition 5.29 Silberschatz, Galvin and Gagne ©2013 compare_and_swap Instruction The compare_and_swap (CAS) instruction is a fundamental atomic operation used in many operating systems and concurrent programming environments. It allows for safe, lock-free synchronization between threads or processes in a multi-threaded or multi-core system. Operating System Concepts – 9th Edition 5.30 Silberschatz, Galvin and Gagne ©2013 compare_and_swap Instruction The compare_and_swap instruction atomically compares the value at a specified memory location with a given value. If the current value matches the expected value, it swaps it with a new value. If the current value does not match the expected value, no swap is performed. The function typically returns the original value at the memory location, allowing the caller to determine if the swap occurred. Operating System Concepts – 9th Edition 5.31 Silberschatz, Galvin and Gagne ©2013 Definitions pointer_to_variable: A reference to the variable or memory location that is being modified. expected_value: The value that is expected to be in the variable. new_value: The value to store in the variable if the expected_value matches. Operating System Concepts – 9th Edition 5.32 Silberschatz, Galvin and Gagne ©2013 Solution using compare_and_swap Shared integer “lock” initialized to 0; Solution: do { while (compare_and_swap(&lock, 0, 1) != 0) ; lock = 0; } while (true); Operating System Concepts – 9th Edition 5.33 Silberschatz, Galvin and Gagne ©2013 Bounded-waiting Mutual Exclusion with test_and_set do { waiting[i] = true; key = true; while (waiting[i] && key) key = test_and_set(&lock); waiting[i] = false; j = (i + 1) % n; while ((j != i) && !waiting[j]) j = (j + 1) % n; if (j == i) lock = false; else waiting[j] = false; } while (true); Operating System Concepts – 9th Edition 5.34 Silberschatz, Galvin and Gagne ©2013 Mutex Locks Previous solutions are complicated and generally inaccessible to application programmers OS designers build software tools to solve critical section problem Simplest is mutex lock Protect a critical section by first acquire() a lock then release() the lock  Boolean variable indicating if lock is available or not Calls to acquire() and release() must be atomic  Usually implemented via hardware atomic instructions But this solution requires busy waiting This lock therefore called a spinlock Operating System Concepts – 9th Edition 5.35 Silberschatz, Galvin and Gagne ©2013 acquire() and release() acquire() { while (!available); available = false;; } release() { available = true; } do { acquire lock critical section release lock remainder section } while (true); Operating System Concepts – 9th Edition 5.36 Silberschatz, Galvin and Gagne ©2013 Semaphore Synchronization tool that provides more sophisticated ways (than Mutex locks) for process to synchronize their activities. Semaphore S – integer variable Can only be accessed via two indivisible (atomic) operations  wait() and signal()  Originally called P() and V() Definition of the wait() operation wait(S) { while (S value--; if (S->value < 0) { add this process to S->list; block(); } } signal(semaphore *S) { S->value++; if (S->value list; wakeup(P); } } Operating System Concepts – 9th Edition 5.43 Silberschatz, Galvin and Gagne ©2013 Deadlock and Starvation Deadlock – two or more processes are waiting indefinitely for an event that can be caused by only one of the waiting processes Let S and Q be two semaphores initialized to 1 P0 P1 wait(S); wait(Q); wait(Q); wait(S);...... signal(S); signal(Q); signal(Q); signal(S); Starvation – indefinite blocking  A process may never be removed from the semaphore queue in which it is suspended Priority Inversion – Scheduling problem when lower-priority process holds a lock needed by higher-priority process  Solved via priority-inheritance protocol Operating System Concepts – 9th Edition 5.44 Silberschatz, Galvin and Gagne ©2013 Classical Problems of Synchronization Classical problems used to test newly-proposed synchronization schemes  Bounded-Buffer Problem  Readers and Writers Problem  Dining-Philosophers Problem Operating System Concepts – 9th Edition 5.45 Silberschatz, Galvin and Gagne ©2013 Bounded-Buffer Problem n buffers, each can hold one item Semaphore mutex initialized to the value 1 Semaphore full initialized to the value 0 Semaphore empty initialized to the value n Operating System Concepts – 9th Edition 5.46 Silberschatz, Galvin and Gagne ©2013 Bounded Buffer Problem (Cont.) The structure of the producer process do {...... wait(empty); wait(mutex);...... signal(mutex); signal(full); } while (true); Operating System Concepts – 9th Edition 5.47 Silberschatz, Galvin and Gagne ©2013 Bounded Buffer Problem (Cont.) The structure of the consumer process Do { wait(full); wait(mutex);...... signal(mutex); signal(empty);...... } while (true); Operating System Concepts – 9th Edition 5.48 Silberschatz, Galvin and Gagne ©2013 Readers-Writers Problem A data set is shared among a number of concurrent processes  Readers – only read the data set; they do not perform any updates  Writers – can both read and write Problem – allow multiple readers to read at the same time  Only one single writer can access the shared data at the same time Several variations of how readers and writers are considered – all involve some form of priorities Shared Data  Data set  Semaphore rw_mutex initialized to 1  Semaphore mutex initialized to 1  Integer read_count initialized to 0 Operating System Concepts – 9th Edition 5.49 Silberschatz, Galvin and Gagne ©2013 Readers-Writers Problem (Cont.) The structure of a writer process do { wait(rw_mutex);...... signal(rw_mutex); } while (true); Operating System Concepts – 9th Edition 5.50 Silberschatz, Galvin and Gagne ©2013 Readers-Writers Problem (Cont.) The structure of a reader process do { wait(mutex); read_count++; if (read_count == 1) wait(rw_mutex); signal(mutex);...... wait(mutex); read count--; if (read_count == 0) signal(rw_mutex); signal(mutex); } while (true); Operating System Concepts – 9th Edition 5.51 Silberschatz, Galvin and Gagne ©2013 Readers-Writers Problem Variations First variation – no reader kept waiting unless writer has permission to use shared object Second variation – once writer is ready, it performs the write ASAP Both may have starvation leading to even more variations Problem is solved on some systems by kernel providing reader-writer locks Operating System Concepts – 9th Edition 5.52 Silberschatz, Galvin and Gagne ©2013 Dining-Philosophers Problem Philosophers spend their lives alternating thinking and eating Don’t interact with their neighbors, occasionally try to pick up 2 chopsticks (one at a time) to eat from bowl  Need both to eat, then release both when done In the case of 5 philosophers  Shared data  Bowl of rice (data set)  Semaphore chopstick initialized to 1 Operating System Concepts – 9th Edition 5.53 Silberschatz, Galvin and Gagne ©2013 Dining-Philosophers Problem Algorithm The structure of Philosopher i: do { wait (chopstick[i] ); wait (chopStick[ (i + 1) % 5] ); // eat signal (chopstick[i] ); signal (chopstick[ (i + 1) % 5] ); // think } while (TRUE); What is the problem with this algorithm? Operating System Concepts – 9th Edition 5.54 Silberschatz, Galvin and Gagne ©2013 Dining-Philosophers Problem Algorithm (Cont.) Deadlock handling  Allow at most 4 philosophers to be sitting simultaneously at the table.  Allow a philosopher to pick up the forks only if both are available (picking must be done in a critical section.  Use an asymmetric solution -- an odd-numbered philosopher picks up first the left chopstick and then the right chopstick. Even-numbered philosopher picks up first the right chopstick and then the left chopstick. Operating System Concepts – 9th Edition 5.55 Silberschatz, Galvin and Gagne ©2013 Problems with Semaphores Incorrect use of semaphore operations:  signal (mutex) …. wait (mutex)  wait (mutex) … wait (mutex)  Omitting of wait (mutex) or signal (mutex) (or both) Deadlock and starvation are possible. Operating System Concepts – 9th Edition 5.56 Silberschatz, Galvin and Gagne ©2013 Monitors A high-level abstraction that provides a convenient and effective mechanism for process synchronization Abstract data type, internal variables only accessible by code within the procedure Only one process may be active within the monitor at a time But not powerful enough to model some synchronization schemes monitor monitor-name { // shared variable declarations procedure P1 (…) { …. } procedure Pn (…) {……} Initialization code (…) { … } } } Operating System Concepts – 9th Edition 5.57 Silberschatz, Galvin and Gagne ©2013 Schematic view of a Monitor Operating System Concepts – 9th Edition 5.58 Silberschatz, Galvin and Gagne ©2013 Condition Variables condition x, y; Two operations are allowed on a condition variable:  x.wait() – a process that invokes the operation is suspended until x.signal()  x.signal() – resumes one of processes (if any) that invoked x.wait()  If no x.wait() on the variable, then it has no effect on the variable Operating System Concepts – 9th Edition 5.59 Silberschatz, Galvin and Gagne ©2013 Monitor with Condition Variables Operating System Concepts – 9th Edition 5.60 Silberschatz, Galvin and Gagne ©2013 Condition Variables Choices If process P invokes x.signal(), and process Q is suspended in x.wait(), what should happen next?  Both Q and P cannot execute in parallel. If Q is resumed, then P must wait Options include  Signal and wait – P waits until Q either leaves the monitor or it waits for another condition  Signal and continue – Q waits until P either leaves the monitor or it waits for another condition  Both have pros and cons – language implementer can decide  Monitors implemented in Concurrent Pascal compromise  P executing signal immediately leaves the monitor, Q is resumed  Implemented in other languages including Mesa, C#, Java Operating System Concepts – 9th Edition 5.61 Silberschatz, Galvin and Gagne ©2013 Monitor Solution to Dining Philosophers monitor DiningPhilosophers { enum { THINKING; HUNGRY, EATING) state ; condition self ; void pickup (int i) { state[i] = HUNGRY; test(i); if (state[i] != EATING) self[i].wait; } void putdown (int i) { state[i] = THINKING; // test left and right neighbors test((i + 4) % 5); test((i + 1) % 5); } Operating System Concepts – 9th Edition 5.62 Silberschatz, Galvin and Gagne ©2013 Solution to Dining Philosophers (Cont.) void test (int i) { if ((state[(i + 4) % 5] != EATING) && (state[i] == HUNGRY) && (state[(i + 1) % 5] != EATING) ) { state[i] = EATING ; self[i].signal () ; } } initialization_code() { for (int i = 0; i < 5; i++) state[i] = THINKING; } } Operating System Concepts – 9th Edition 5.63 Silberschatz, Galvin and Gagne ©2013 Solution to Dining Philosophers (Cont.) Each philosopher i invokes the operations pickup() and putdown() in the following sequence: DiningPhilosophers.pickup(i); EAT DiningPhilosophers.putdown(i); No deadlock, but starvation is possible Operating System Concepts – 9th Edition 5.64 Silberschatz, Galvin and Gagne ©2013 Monitor Implementation Using Semaphores Variables semaphore mutex; // (initially = 1) semaphore next; // (initially = 0) int next_count = 0; Each procedure F will be replaced by wait(mutex); … body of F; … if (next_count > 0) signal(next) else signal(mutex); Mutual exclusion within a monitor is ensured Operating System Concepts – 9th Edition 5.65 Silberschatz, Galvin and Gagne ©2013 Monitor Implementation – Condition Variables For each condition variable x, we have: semaphore x_sem; // (initially = 0) int x_count = 0; The operation x.wait can be implemented as: x_count++; if (next_count > 0) signal(next); else signal(mutex); wait(x_sem); x_count--; Operating System Concepts – 9th Edition 5.66 Silberschatz, Galvin and Gagne ©2013 Monitor Implementation (Cont.) The operation x.signal can be implemented as: if (x_count > 0) { next_count++; signal(x_sem); wait(next); next_count--; } Operating System Concepts – 9th Edition 5.67 Silberschatz, Galvin and Gagne ©2013 Resuming Processes within a Monitor If several processes queued on condition x, and x.signal() executed, which should be resumed? FCFS frequently not adequate conditional-wait construct of the form x.wait(c)  Where c is priority number  Process with lowest number (highest priority) is scheduled next Operating System Concepts – 9th Edition 5.68 Silberschatz, Galvin and Gagne ©2013 Single Resource allocation Allocate a single resource among competing processes using priority numbers that specify the maximum time a process plans to use the resource R.acquire(t);... access the resurce;... R.release; Where R is an instance of type ResourceAllocator Operating System Concepts – 9th Edition 5.69 Silberschatz, Galvin and Gagne ©2013 A Monitor to Allocate Single Resource monitor ResourceAllocator { boolean busy; condition x; void acquire(int time) { if (busy) x.wait(time); busy = TRUE; } void release() { busy = FALSE; x.signal(); } initialization code() { busy = FALSE; } } Operating System Concepts – 9th Edition 5.70 Silberschatz, Galvin and Gagne ©2013 Synchronization Examples Solaris Windows Linux Pthreads Operating System Concepts – 9th Edition 5.71 Silberschatz, Galvin and Gagne ©2013 Solaris Synchronization Implements a variety of locks to support multitasking, multithreading (including real-time threads), and multiprocessing Uses adaptive mutexes for efficiency when protecting data from short code segments  Starts as a standard semaphore spin-lock  If lock held, and by a thread running on another CPU, spins  If lock held by non-run-state thread, block and sleep waiting for signal of lock being released Uses condition variables Uses readers-writers locks when longer sections of code need access to data Uses turnstiles to order the list of threads waiting to acquire either an adaptive mutex or reader-writer lock  Turnstiles are per-lock-holding-thread, not per-object Priority-inheritance per-turnstile gives the running thread the highest of the priorities of the threads in its turnstile Operating System Concepts – 9th Edition 5.72 Silberschatz, Galvin and Gagne ©2013 Windows Synchronization Uses interrupt masks to protect access to global resources on uniprocessor systems Uses spinlocks on multiprocessor systems  Spinlocking-thread will never be preempted Also provides dispatcher objects user-land which may act mutexes, semaphores, events, and timers  Events  An event acts much like a condition variable  Timers notify one or more thread when time expired  Dispatcher objects either signaled-state (object available) or non-signaled state (thread will block) Operating System Concepts – 9th Edition 5.73 Silberschatz, Galvin and Gagne ©2013 Linux Synchronization Linux:  Prior to kernel Version 2.6, disables interrupts to implement short critical sections  Version 2.6 and later, fully preemptive Linux provides:  Semaphores  atomic integers  spinlocks  reader-writer versions of both On single-cpu system, spinlocks replaced by enabling and disabling kernel preemption Operating System Concepts – 9th Edition 5.74 Silberschatz, Galvin and Gagne ©2013 Pthreads Synchronization Pthreads API is OS-independent It provides:  mutex locks  condition variable Non-portable extensions include:  read-write locks  spinlocks Operating System Concepts – 9th Edition 5.75 Silberschatz, Galvin and Gagne ©2013 Alternative Approaches Transactional Memory OpenMP Functional Programming Languages Operating System Concepts – 9th Edition 5.76 Silberschatz, Galvin and Gagne ©2013 Transactional Memory A memory transaction is a sequence of read-write operations to memory that are performed atomically. void update() { } Operating System Concepts – 9th Edition 5.77 Silberschatz, Galvin and Gagne ©2013 OpenMP OpenMP is a set of compiler directives and API that support parallel progamming. void update(int value) { #pragma omp critical { count += value } } The code contained within the #pragma omp critical directive is treated as a critical section and performed atomically. Operating System Concepts – 9th Edition 5.78 Silberschatz, Galvin and Gagne ©2013 Functional Programming Languages Functional programming languages offer a different paradigm than procedural languages in that they do not maintain state. Variables are treated as immutable and cannot change state once they have been assigned a value. There is increasing interest in functional languages such as Erlang and Scala for their approach in handling data races. Operating System Concepts – 9th Edition 5.79 Silberschatz, Galvin and Gagne ©2013 End of Chapter 5 Operating System Concepts – 9th Edition Silberschatz, Galvin and Gagne ©2013

Use Quizgecko on...
Browser
Browser