Module 4: Prisms and Cylinders PDF
Document Details
Uploaded by WellMint
Tags
Summary
This document contains practice exercises and questions focusing on geometrical shapes, including prisms and cylinders. The exercises involve finding areas, circumferences and volumes of 2D and 3D shapes.
Full Transcript
# MODULE 4: Les prismes et les cylindres ## Amuse-toi! Serrons-nous la main **Instructions:** - Draw a circle and represent people with points. - Connect each point to all other points to represent handshakes. - Record results in the table. - Describe the pattern in the number of handshakes. |...
# MODULE 4: Les prismes et les cylindres ## Amuse-toi! Serrons-nous la main **Instructions:** - Draw a circle and represent people with points. - Connect each point to all other points to represent handshakes. - Record results in the table. - Describe the pattern in the number of handshakes. | Nombre de personnes | Nombre de poignées de main | |---|---| | 1 | 0 | | 2 | 1 | | 3 | 3 | | 4 | | | 5 | | | 6 | | | 7 | | ## La chasse aux mots **Instructions:** - Find the words from the list in the following grid: - Words can be horizontal, vertical, or diagonal. - Write the 12 unused letters in order, by row, from left to right, separated by spaces. - Create a sentence from the unused letters. **Word list:** - ANGLE - AIRE - BASE - BOÎTE - CAPACITÉ - CUBE - DÉCAGONE - QUATRE - HEXAGONE - MÈTRE - PRISME - PYRAMIDE - RECTANGLE - CARRÉ - DEUX **Grid:** ``` EBASEEVIEP MLVETLRNEY SSGMIAOTTR IHSNCGSREA RHEXAGONEM PVTCPTMCRI XUEDARCAID DDSBCUBEA E ERTAUQDPRT ETIOBANGLE ``` ## Rappelle-toi! L'aire des figures à deux dimensions **Instructions:** - Calculate the area of each triangle. - Calculate the area of each triangle. **Triangle:** - Base: 7.8 cm - Height: 1.8 cm - Area: $A = \frac{bh}{2} = \frac{1}{2} * 7.8 * 1.8 = 7.02$ cm² **Triangles:** **a)** - Base: 7 m - Height: 12 m - Area: $A = \frac{bh}{2}$ = __ m² **b)** - Base: 3.4 cm - Height: 5.6 cm - Area: $A = \frac{bh}{2}$ = __ **Triangles:** **a)** - Base: 3.5 cm - Height: 6.4 cm - Area: A = ___ **b)** - Base: 8.6 cm - Height: 4.2 cm - Area: A = ___ **Circle:** - Diameter: 14 cm - Radius: 7 cm - Area: $A = πr² = π * 7² ≈ 153.938 cm²$ ≅ 154 cm² **Circle:** - Calculate the area of each circle and round to the nearest whole number. **a)** - Diameter: 24 cm - Radius: __ cm - Area: A = __ cm² **b)** - Radius: 9 m - Area: A = __ m² **c)** - Diameter: 11 mm - Area: A = __ mm² **d)** - Radius: 8 km - Area: A = __ km² **Circumference of a circle** - Calculate the circumference of a circle with a diameter of 4.8 cm: - Circumference: $C = πd = π * 4.8 ≈ 15.080$ cm ≅ 15.1 cm - Calculate the circumference of a circle with a radius of 5.2 cm: - Circumference: $C = 2πr = 2 * π * 5.2 ≈ 32.673$ cm ≅ 32.7 cm **Circle** - Calculate the circumference of each circle and round to one decimal place. **a)** - Diameter: 12 cm - Circumference: C = π * d ≈ __ cm **b)** - Radius: 8 m - Circumference: C = 2 * π * r ≈ __ m **c)** - Diameter: 5.6 mm - Circumference: C = __ mm **d)** - Radius: 3.8 m - Circumference: C = __ m # 4.1 Les développements ## Révision éclair - A **prism** has congruent bases, and its name is based on its bases. - A **pyramid** has one base, with all other faces being congruent triangles. - A **net** is a diagram that can be folded to create a solid shape. ## À ton tour **1.** Draw a net of a rectangular prism, labeling each face. **Dimensions:** - Length: 6 cm - Width: 2 cm - Height: 3 cm **2.** Draw a net of a triangular prism, labeling each face. **Dimensions:** - Base length: 5 m - Base height: 6 m - Height: 7 m **3.** Which of the following nets does not represent a cube? **a, b, and c** are each diagrams representing nets. **4. a)** Match each object with its net. **a, b, c, d, e, and f** are each diagrams representing objects and nets. **b)** Label all faces of each object. **5.** For each description, name a shape with the given faces: **a)** Six congruent triangles and a hexagon **b)** Four congruent equilateral triangles **c)** Two congruent squares and four congruent rectangles **d)** Two congruent triangles and three rectangles # 4.2 Construire des objets à partir de développements ## Révision éclair - To determine if a net represents a solid shape, examine each face and how it would be arranged. - The diagram below represents the net of square-based pyramid. **A** and **B** are labeled on the diagram. > The net shown does not represent a square-based pyramid. If the net were folded, triangles **A** and **B** would overlap. ## À ton tour **1.** Which of these nets does not represent a cylinder? **a, b, and c** are each diagrams representing nets **Dimensions:** - Diameter: 11 cm - Height: 5 cm ## 2.** Does each of the following nets represent a solid shape? - If yes, name the object and describe it. - If not, explain what modifications are required to create a net. **a, b, and c** are each diagrams representing nets. ## 3.** Name and describe the object represented by the following net. **The net is a diagram representing a solid shape.** ## 4.** Name the object represented by each of these nets. **a, b, and c** are each diagrams representing nets. ## 5.** Describe how to modify each of the following nets to create a net of a solid shape. Name the object represented by the new net. **a, b, and c** are each diagrams representing nets. **Dimensions:** - **a**: 13 cm, 12 cm, 5 cm - **b**: 5 cm, 12 cm, 5 cm - **c**: 5 m, 12 m # 4.3 L'aire de la surface d'un prisme droit à base rectangulaire ## Révision éclair - The ***total surface area*** of a rectangular prism is the sum of the areas of all its rectangular faces. It equals the area of the net. - In the diagram below, each rectangle is labeled. **Dimensions:** - Length: 4 cm - Width: 3 cm - Height: 5 cm **Calculations:** **A:** - Area: 3 cm * 5 cm = 15 cm² **B:** - Area: 4 cm * 3 cm = 12 cm² **C:** - Area: 4 cm * 5 cm = 20 cm² **Total Surface Area:** - 2 * 15 cm² + 2 * 12 cm² + 2 * 20 cm² = 94 cm² ## À ton tour **1.** Calculate the surface area of the rectangular prism represented by its net. **The net represents a prism with the surface area of each face labeled.** **Dimensions:** - Length: 12 cm - Width: 12 cm - Height: 8 cm **Total surface Area:** 2 * __ cm² + 2 * __ cm² + 2 * __ cm² = __ cm² ## 2.** Calculate the total surface area of the rectangular prism. **The diagram is a representation of the prism.** **Dimensions:** - Length: 8 m - Width: 5 m - Height: 1 m **Calculations:** - **A:** __*__ = __ - **B:** __*__ = __ - **C:** __*__ = __ **Total surface Area:** 2 * __ + 2 * __ + 2 * __ = __ ## 3.** Glenda and Louis are each designing a rectangular box. Whose design has the larger total surface area? Show all your calculations. **Glenda’s Design:** **Dimensions:** - Length: 12 cm - Width: 8 cm - Height: 20 cm **Calculations:** **A:** __ + __ + __ = __ **Louis’ Design:** **Dimensions:** - Length: 24 cm - Width: 6 cm - Height: 10 cm **Calculations:** **A:** __ + __ + __ = __ **Answer:** The box designed by __ has the larger surface area. ## 4.** The surface area of a cube is 294 cm². **a)** What is the area of each face of the cube? **Calculations:** - Area of each face: __ **b)** What is the edge length of the cube? **Calculations:** - Edge length: __ ## 5.** An office building that resembles a rectangular prism is 200 m tall, 60 m long, and 40 m wide. The top quarter of each vertical face will be covered in a large banner. What is the total area of the banner? **Calculations:** **Surface area of the Banner:** - (1/4) * __ * __ + (1/4) * __ * __ + (1/4) * __ * __ + (1/4) * __ * __ = __ m² # 4.4 L'aire de la surface d'un prisme droit à base triangulaire ## Révision éclair - To calculate the surface area of a triangular prism, determine the area of each face and add them. **Dimensions:** - Base: 14 cm - Height: 4 cm - Length: 7 cm **Calculations:** **A:** 8 cm * 7 cm = 56 cm² **B:** 14 cm * 7 cm = 98 cm² **C:** 8 cm * 7 cm = 56 cm² **D:** 1/2 * 14 cm * 4 cm = 28 cm² **E:** 1/2 * 14 cm * 4 cm = 28 cm² **Total Surface Area:** 56 cm² + 98 cm² + 56 cm² + 28 cm² + 28 cm² = 266 cm² ## À ton tour **1.** Calculate the surface area of the triangular prism represented by its net. **Dimensions:** - Base: 3 m - Height: 4 m - Length: 5 m **Calculations:** **A:** __ * __ = __ **B:** __ * __ = __ **C:** __ * __ = __ **D:** 1/2 * __ * __ = __ **E:** 1/2 * __ * __ = __ **Total Surface Area:** __ + __ + __ + __ + __ = __ m² ## 2.** Determine the total surface area of each prism below. **a)** - Base: 5 cm - Height: 4 cm - Length: 6 cm - Total Surface Area: 5 cm * 6 cm + 5 cm * 11 cm + 4 cm * 6 cm + 2 * (1/2 * 4 cm * 5 cm) = __ cm² **b)** - Base: 5 m - Height: 10 m - Length: 12 m - Total Surface Area: 5 m * 12 m + 10 m * 12 m + 5 m * 13 m + 2 * (1/2 * 10 m * 5 m) = __ m² **c)** - Base: 5 m - Height: 7 m - Length: 7 m - Total Surface Area: 5 m * 7 m + 5 m * 8 m + 7 m * 7 m + 2 * (1/2 * 7 m * 5 m) = __ m² **d)** - Base: 5.7 m - Height: 9 m - Length: 7 m - Total Surface Area: 5.7 m * 7 m + 5.7 m * 9 m + 7 m * 4 m + 2 * (1/2 * 5.7 m * 4 m) = __ m² ## 3.** Determine the surface area of the triangular prism. **Dimensions:** - Base: 6 cm - Height: 16 cm - Length: 10 cm **Calculations:** **Surface Area:** 2 * (1/2 * 6 cm * 16 cm) + 6 cm * 10 cm + 16 cm * 10 cm + 28 cm * 10 cm = __ cm² ## 4.** Determine the area of the net of a prism. **Dimensions:** - Base: 12 cm - Height: 13 cm - Length: 5 cm **Calculations:** - Area of net: 5 cm * 13 cm + 5 cm * 12 cm + 13 cm * 12 cm + 2 * (1/2 * 12 cm * 13 cm) = __ cm² ## 5.** Calculate the total surface area of the prism. **Dimensions:** - Base: 4 mm - Height: 3 mm - Length: 5 mm - Depth: 18 mm **Calculations:** - Total Surface Area: 18 mm * 5 mm + 18 mm * 4 mm + 4 mm * 5 mm + 2 * (1 / 2 * 4 mm * 3 mm) + 2 * (1/2 * 3 mm * 5 mm) = __ mm² # 4.5 Le volume d'un prisme droit à base rectangulaire ## Révision éclair - To find the volume of a rectangular prism, multiply the area of its base by its height. **Dimensions:** - Length: 10 cm - Width: 4 cm - Height: 8 cm **Calculations:** - Area of the base: 10 cm * 4 cm = 40 cm² - Volume: - V = Bh = 40 cm² * 8 cm = 320 cm³ ## À ton tour **1.** Determine the volume of each rectangular prism. **a.** - Base area: 60 cm² - Height: 8 cm - Volume: V = Ah = 60 cm² * 8 cm = __ cm³ **b**. - Base area: 36 cm² - Height: 6 cm - Volume: V = Ah = __ cm³ **c.** - Base area: 12 m² - Height: 9 m - Volume: V = Ah = __ cm³ ## 2.** Determine the volume of each prism. **a.** - Length: 8.5 m - Width: 7 m - Height: 6 m **Calculations:** - Area of the base: __ * __ = __ m² - Volume: V = Ah = __ m² * __ m = __ m³ **b.** - Length: 4.8 cm - Width: 3 cm - Height: 10.5 cm **Calculations:** - Area of the base: __ * __ = __ cm² - Volume: V = Ah = __ cm² * __ cm = __ cm³ **c.** - Length: 3.5 mm - Width: 5.5 mm - Height: 4 mm **Calculations:** - Area of the base: __ * __ = __ mm² - Volume: V = Ah = __ mm² * __ mm = __ mm³ ## 3.** A rectangular prism is 16 cm long, 12 cm wide, and 5 cm high. **a.** What is the volume of the prism? **Calculations:** - Volume: __ * __ * __ = __ cm³ **b.** What is the new volume if the length is halved and the height is doubled? **Calculations:** - New length: __ cm - New height: __ cm - New volume: __ cm * __ cm * __ cm ## 4.** Which of these rectangular prisms has a larger volume? **A.** Length: 6 m, Width: 4.5 m, Height: 3.6 m **B.** A cube that is 4.6 m on each edge. **Calculations:** **A.** Volume: __ * __ * __ = __ m³ **B.** Volume: __ * __ * __ = __ m³ - The prism with the greater volume is __. - The difference between the volumes of the two prisms is __ m³. ## 5.** A fish pond shaped like a rectangular prism is 4 m long, 3 m wide, and 2 m deep. **a.** What is the volume of the empty pond? **Calculations:** - Volume of the pond: __ * __ * __ = __ m³ **b.** If the pond is filled to a depth of 1.5 m, what is the volume of water in the pond, in liters? (Remember that 1 L = 1000 cm³.) **Calculations:** - Volume of water: __ m * __ m * __ m = __ m³ **Conversions:** - Length: __ m = __ cm - Width: __ m = __ cm - Depth: __ m = __ cm - Volume of water: __ cm * __ cm * __ cm = __ cm³ = __ L # 4.6 Le volume d'un prisme droit à base triangulaire ## Révision éclair - To find the volume of a triangular prism, first find the area of its triangular base and then multiply it by the prism’s length, l. **Dimensions:** - Base: 9 cm - Height: 5 cm - Length: 12 cm **Calculations:** - Area of the triangle: 1/2 * 9 cm * 5 cm = 22.5 cm² - Volume: - V = Al = 22.5 cm² * 12 cm = 270 cm³ ## À ton tour **1.** Determine the volume of each triangular prism. **a**. - Base area: 5 m² - Length: 12 m - Volume: V = Al = __ m² * __ m = __ m³ **b**. - Base area: 14 cm² - Length: 20 cm - Volume: V = Al = __ cm² * __ cm = __ cm³ ## 2.** Determine the volume of each prism. **a.** - Base: 7 cm - Height: 4 cm - Length: 12 cm **Calculations:** - Area of triangle: 1/2 * 7 cm * 4 cm = __ cm² - Volume: V = Al = __ cm² * 12 cm = __ cm³ **b.** - Base: - length: 6 m - height: 2 m - Length: 5 m - Volume: V = Al = __ m² * __ m = __ m³ **c.** - Base: - length: 2 mm - height: 1.5 mm - Length: 3.8 mm - Volume: V = Al = __ mm² * __ mm = __ mm³ ## 3.** The volume of a triangular prism is 27.8 cm³. The prism is 5 cm long. What is the area of each triangular base? **Calculations:** - Area of the base: A = V/l = 27.8 cm³ / 5 cm = __ cm² ## 4.** The volume of a triangular prism is 6 cm³. Determine all possible whole number values for the area, *A*, of the base and the length, *l*, of the prism. Create a table to display your results. | A | l | |---|---| | | | ## 5.** Determine the volume of the prism. **Dimensions:** - Base: 6 cm - Height: 10 cm - Depth: 9 cm **Calculations:** - Area of the base: 1/2 * 6 cm * 10 cm = __ cm² - Volume: V = Al = __ cm² * 9 cm = __ cm³ ## 6.** a) Determine the volume of the prism. **Dimensions:** - Base: 15 cm - Height: 20 cm - Length: 10 cm **Calculations:** - Area of the base: 1/2 * 15 cm * 20 cm = __ cm² - Volume: V = Al = __ cm² * 10 cm = __ cm³ **b.** Suppose the prism contains 1200 mL of water. What is the depth of the water? (Remember 1 cm³ = 1 mL) **Calculations:** - V = 1200 mL = __ cm³ - A = 1/2 * 15 cm * 20 cm = __ cm² - l = V/A = __ cm³ / __ cm² = __ cm - Depth: __ cm # 4.7 L'aire de la surface d'un cylindre droit ## Révision éclair - To find the total surface area of a cylinder, add the area of its two circular bases to the area of its rectangular lateral surface. **Dimensions:** - Radius: r = 6 cm - Height: h = 5 cm **Calculations:** - Area of one circle: $πr² = π * 6² ≈ 113.10 cm² $ - Area of the rectangle: $2πr * h = 2 * π * 6 * 5 ≈ 188.50 cm² $ - Total surface area: 2 * 113.10 cm² + 188.50 cm² = 414.70 cm² ≈ 415 cm² ## À ton tour **1.** Determine the surface area of each cylinder to the nearest square centimeter. **a.** - Radius: 4 cm - Height: 12 cm **Calculations:** - Area of one circle: $ πr² = π * 4² ≈ 50.27 cm² $ - Area of the rectangle: $2πr * h = 2 * π * 4 * 12 ≈ 301.59 cm² $ - Total surface area: 2 * 50.27 cm² + 301.59 cm² = __ cm² ≈ __ cm² **b.** - Diameter: 8 cm - Height: 20 cm **Calculations:** - Radius: 4 cm - Area of one circle: $πr² = π * 4² ≈ 50.27 cm² $ - Area of the rectangle: $2πr * h = 2 * π * 4 * 20 ≈ 502.65 cm² $ - Total surface area: 2 * 50.27 cm² + 502.65 cm² = __ cm² ≈ __ cm² **c.** - Base: 2 cm - Height: 16 cm **Calculations:** - Radius: __ cm - Area of one circle: $πr² = π * __² ≈ __ cm² $ - Area of the rectangle: $2πr * h = 2 * π * __ * 16 ≈ __ cm² $ - Total surface area: 2 * __ cm² + __ cm² = __ cm² ≈ __ cm² ## 2.** Determine the total surface area of each cylinder to the nearest whole number. **a.** - Radius: 8 cm - Height: 12 cm **Calculations:** - Area of one circle: $πr² = π * 8² ≈ 201.06 cm² $ - Area of the rectangle: $2πr * h = 2 * π * 8 * 12 ≈ 603.19 cm² $ - Total surface area: 2 * 201.06 cm² + 603.19 cm² = __ cm² ≈ __ cm² **b.** - Diameter: 9 m - Height: 6.8 m **Calculations:** - Radius: __ m - Area of one circle: $πr² = π * __² ≈ __ m² $ - Area of the rectangle: $2πr * h = 2 * π * __ * 6.8 ≈ __ m² $ - Total surface area: 2 * __ m² + __ m² = __ m² ≈ __ m² **c.** - Diameter: 7.2 cm - Height: 9.3 cm **Calculations:** - Radius: __ cm - Area of one circle: $πr² = π * __² ≈ __ cm² $ - Area of the rectangle: $2πr * h = 2 * π * __ * 9.3 ≈ __ cm² $ - Total surface area: 2 * __ cm² + __ cm² = __ cm² ≈ __ cm² ## 3.** Determine the surface area of each cylinder rounded to one decimal place. The cylinders are open at one end. **a.** - Diameter: 15 m - Height: 7 m **Calculations:** - Radius: __ m - Area of the circle: $πr² = π * __² ≈ __ m² $ - Area of the rectangle: $2πr * h = 2 * π * __ * 7 ≈ __ m² $ - Total surface area: __ m² + __ m² ≈ __ m² **b.** - Diameter: 23 cm - Height: 4.8 cm **Calculations:** - Radius: __ cm - Area of the circle: $πr² = π * __² ≈ __ cm² $ - Area of the rectangle: $2πr * h = 2 * π * __ * 4.8 ≈ __ cm² $ - Total surface area: __ cm² + __ cm² ≈ __ cm² ## 4.** A steel mill uses cylindrical rollers. One roller is 1.8 m in diameter and 2.6 m long. What is the surface area of the curved portion of the roller? **Calculations:** - Radius: __ m - Area of the curved portion: $2πrh = 2 * π * __ * 2.6 ≈ __ m² $ ## 5.** The total surface area of an open cylinder is 377 cm². The height of the cylinder is 10 cm. **a.** What is the circumference of the base of the cylinder? **Calculations:** - Area of the curved portion: __ cm² - Circumference * height = Area of curved portion - Circumference * __ cm = __ cm² - Circumference = __ cm² / __ cm = __ cm **b.** What is the radius of the base of the cylinder? **Calculations:** - Circumference: $2πr = __ cm$ - $r = 2π / __ cm ≈ __ cm$ # 4.8 Le volume d'un cylindre droit ## Révision éclair - To find the volume of a cylinder, multiply the area of its base by its height. **Dimensions:** - Base area: 312 m² - Height: 9 m **Calculations:** - Volume: 312 m² * 9 m = 2808 m³ **Dimensions:** - Diameter: 18 cm - Height: 15 cm **Calculations:** - Radius: 9 cm - Volume: V = πr²h ≈ 3.14 * 9² * 15 ≈ 3817 cm³ ## À ton tour **1.** Determine the volume of each cylinder rounded to the nearest whole number. The areas of the bases and heights are given. **a.** - Base area: 27.6 cm² - Height: 4 cm - Volume: __ cm² * __ cm = __cm³ ≈ __ cm³ **b.** - Base area: 423 cm² - Height: 9 cm - Volume: __ cm² * __ cm = __cm³ ≈ __ cm³ **c.** - Base area: 75.8 m² - Height: 63 m - Volume: __ m² * __ m = __m³ ≈ __ m³ ##2.** Determine the volume of each cylinder to the nearest whole number. **a.** - Radius: 6 cm - Height: 9 cm **Calculations:** - Volume: V = πr²h ≈ 3.14 * 6² * 9 ≈ __ cm³ **b.** - Diameter: 18 mm - Height: 35 mm **Calculations:** - Radius: __ mm - Volume: V ≈ 3.14 * __² * __ mm ≈ __ mm³ **c.** - Diameter: 9 m - Height: 12 m **Calculations:** - Radius: __ m - Volume: V ≈ 3.14 * __² * __ m ≈ __ m³ ## 3.** Determine the volume of each cylinder to one decimal place. **a.** - Radius: 12 cm - Height: 12 cm **Calculations:** - Volume: V ≈ 3.14 * 12² * 12 ≈ __ cm³ **b**. - Diameter: 16.8 m - Height: 5.4 m **Calculations:** - Radius: __ m - Volume: V ≈ 3.14 * __² * 5.4 ≈ __ m³ ## 4.** Based on their volumes, which cylinder is larger? By how much? **A.** Radius: 6.4 cm, Height: 3.2 cm **B.** Radius: 4.3 cm, Height: 7.2 cm **Calculations:** **A.** Volume: V ≈ 3.14 * 6.4² * 3.2 ≈ __ cm³ **B.** Volume: V ≈ 3.14 * 4.3² * 7.2 ≈ __ cm³ - The cylinder that is larger is __. - The difference in volume between the two cylinders is __ cm³. ## 5.** a) Determine, to one decimal place, the volume of a cylinder that has a radius of 5 cm and a height of 10 cm. **Calculations:** - Volume: V ≈ 3.14 * 5² * 10 ≈ __ cm³ **b.** What happens to the volume of the cylinder in part **a)** if the radius is doubled? - Doubling the radius results in a volume that is __ times the original volume. **c.** What happens to the volume of the cylinder in part **a)** if the height is doubled? - Doubling the height results in a volume that is __ times the original volume. # Dans tes propres mots - Create a glossary of terms, including definitions and examples. | Terme | Définition | Exemple | |---|---|---| | Développement | Une figure ou un schéma qui peut être plié pour créer un objet. | Le schéma d'un cube qui peut être plié pour former un cube. | | Polyèdre | Un solide géométrique dont les faces sont des polygones. | Un cube, un prisme, une pyramide. | | Prisme régulier | Un prisme dont les faces latérales sont des rectangles identiques et dont les bases sont des polygones réguliers identiques. | Un prisme à base carrée. | | Pyramide régulière | Une pyramide dont la base est un polygone régulier et dont toutes les arêtes latérales ont la même longueur. | Une pyramide à base carrée. | | Aire de la surface ou aire totale | La somme des aires de toutes les faces d'un solide. | L'aire totale d'un cube est la somme des aires de ses 6 faces carrées. | | Volume | La quantité d'espace qu'occupe un solide. | Le volume d'un cube est la mesure de l'espace qu'il occupe. | ## Énumère d'autres termes mathématiques que tu dois connaître. - Arêtes - Sommets - Faces - Base - Côté - Hauteur - Cylindre - Cônes - Sphère - Diamètre # Révision du module ## 4.1 **1.** Draw a net of a square-based pyramid. **Dimensions:** - Base: 6 cm - Height (of each triangular face): 5 cm ## 2.** Which of the following nets does not represent a cube? **a, b, and c** are each diagrams representing nets. ## 4.2 **3.** Match each net with its corresponding object. **a, b, and c** are each diagrams representing nets. **1, 2, and 3** are each diagrams representing objects. ## 4.3 **4.** Determine the area of the net of the rectangular prism. **Dimensions:** - Length: 6 cm - Width: 8 cm - Depth: 6 cm **Calculations:** - Area: (6 cm * 8 cm) + (6 cm * 6 cm) + (8 cm * 6 cm) + (6 cm * 8 cm) + (6 cm * 6 cm) + (8 cm * 6 cm) = __ cm² ## 5.** The surface area of a cube is 384 cm². **a.** What is the edge length of the cube? **Calculations:** - Area of one face: 384 cm² / 6 = __ cm² - Edge length: √ __ cm² = __ cm **b**. What is the volume of the cube? **Calculations** - Volume: __ cm * __ cm * __ cm = __ cm³ ## 6.** a) Draw all possible rectangular prisms with a volume of 8 cm³. Each edge of the prism must have a whole-number length. Record the dimensions of each prism. **Create a table with the following headings:** | Longueur | Largeur | Hauteur | Dessin | |---|---|---|---| | | | | | **b)** Determine the surface area of each prism in the table. ## 4.4 **7.** Determine the total surface area of this prism. **Dimensions:** - Length: 8 m - Width: 6 m