Neuroplasticity Overview PDF

Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...

Summary

This document provides an overview of neuroplasticity, covering its historical context, mechanisms, and applications, including discussion on topics such as brain stimulation and drug addiction. It explores how the nervous system responds to stimuli. Suitable for university-level neuroscience courses or general interest readers.

Full Transcript

Neuroplas*city:  An  Overview   History,  Mechanisms,  Applica*ons,  Rehabilita*on     Tushar  Issar   Ins*tute  of  Neurological  Sciences,   Prince  of  Wales  Hospital   [email protected]   The  Brain   • Composed  of  neurons  (~85  billio...

Neuroplas*city:  An  Overview   History,  Mechanisms,  Applica*ons,  Rehabilita*on     Tushar  Issar   Ins*tute  of  Neurological  Sciences,   Prince  of  Wales  Hospital   [email protected]   The  Brain   • Composed  of  neurons  (~85  billion)  and  glia  (~85   billion)   • Average  neuron  makes  ~10,000  synapses     – Synapses  can  be  excitatory  (glutamate)  or  inhibitory   (GABA)   • Neurons  are  specialised  for  controlling  motor   output,  sensory  processing,  or  connec*ng  regions     • Neurons  form  networks  that  are     responsible  for  specific  func*ons     Associate  Professor  Janet  Taylor   “Localisa*onism”   Pearson  Educa8on   History  of  Neuroplas*city   A  few  of  the  pivotal  studies  before  neuroplas4city  became  mainstream   • 1793  –  anatomist  Michele  Malacarne  discovered  animals  that   received  motor  training  had  larger  cerebellums  than  untrained   animals   • 1890  –  psychologist  William  James  proposed  the  brain  and  its   func*on  are  not  fixed   • 1945  –  neuroscien*st  Justo  Gonzalo  observed  dynamic  and   adap*ve  proper*es  aXer  brain  injuries     • 1964  –  Marian  Diamond  produced  first  scien*fic  evidence  of   anatomical  brain  plas*city.  Rats  in  an  enriched  environment  had   thicker  cor*ces  compared  to  rats  in  basic  environment.   History  of  Neuroplas*city   • 1964  –  David  Hubel  and  Torsten  Wiesel  inves*gated  the  effect  of   long-­‐term  closure  of  one  eye  on  brain  ac*vity  in  corresponding   visual  region  for  that  eye.  Found  that  same  brain  region  started   processing  informa*on  from  the  open  eye  instead  of  shut  eye.     • 1984  –  Michael  Merzenich  mapped  five  dis*nct  areas  in  sensory   cortex  corresponding  to  digits  1,2,3,4,5.  Digit  3  was  removed.  2   months  later,  s*mula*on  of  digit  2  or  4  evoked  ac*vity  in  cor*cal   region  where  digit  3  mapped  (adjacent  digits  invaded  unused   region)     • 1997  –  Eleanor  Maguire  documented  changes  in  hippocampal   structure  in  associa*on  with  acquiring  knowledge  of  London’s  road   layout  in  taxi  drivers.  Compared  to  controls,  size  of  hippocampus   was  same  but  posterior  hippocampus  was  bigger   Defini*on  of  Neuroplas*city   The  ability  of  the  nervous  system  to  respond  to   intrinsic  and  extrinsic  s*muli  by  reorganising  its   structure,  func*on,  and  connec*ons.     • Can  occur  at  molecular,  cellular,  system,  behavioural  level   • Can  occur  during  development,  in  response  to  the   environment,  during  disease,     or  aXer  therapy     – Developing  brain     exhibits  a  higher  degree     of  plas*city.       Kral  et  al.  (2010)   Mechanisms  of  Neuroplas*city   Change  in  one  neuron  (molecular  changes)   For  example,   -­‐ Change  in  receptor  conforma*on   -­‐ Altered  gene  expression   Associate  Professor  Janet  Taylor   Mechanisms  of  Neuroplas*city   Change  between  two  neurons  (cellular  changes)   For  example,   -­‐ Altered  synapses   -­‐ Larger  dendri*c  tree   Associate  Professor  Janet  Taylor   Mechanisms  of  Neuroplas*city   Change  in  a  network  of  neurons  (physiological,  anatomical,   behavioural  changes)   For  example,   -­‐ Different  cor*cal   map   -­‐ Improved  motor   performance   Associate  Professor  Janet  Taylor   Mechanisms  of  Neuroplas*city   Neuroplas4city  is  ac4vity-­‐  dependent   “Neurons  that  fire  together,  wire  together”   Long-­‐term  poten8a8on   -­‐ -­‐ -­‐ Long-­‐term  depression   Strong  depolarisa*on     in  post-­‐synap*c  neuron   results  In  high  influx  of   Ca2+   Triggers  inser*on  of   AMPA  receptors   Stronger  synapse   -­‐ -­‐ -­‐ Weak  depolarisa*on   Low  influx  of  Ca2+     results  removal    of  AMPA  receptors   Synapse  gets  weaker   Associate  Professor  Janet  Taylor   Mechanisms  of  Neuroplas*city   Neuroplas4city  in  development   Most  of  brain  growth  aXer  birth  is  in  cerebral  cortex   Growth  is  mainly  from  prolifera*on  and  elabora*on  of  axons  and   processes   • Cri*cal  period  -­‐  In  early  years,  we  develop  more  neurons  than  we  need.   Synapses  are  gradually  eliminated  in  ac*vity-­‐dependent  manner.     • Neurogenesis  s*ll  occurs  in  hippocampus,  olfactory  bulb,  and  cerebellum   in  adults.  Unknown  if  and  how  new  neurons  integrate  into  established   circuits.  Degree  of  neuroplas*city  in  adults  is  unknown.   • • S8les  &  Jernigan  (2010)   Applica*ons  of  Neuroplas*city   Example  1  –  Cerebellar  agenesis   Applica*ons  of  Neuroplas*city   Example  2  –  Neurotrophins  and  Stroke             BDNF  is  a  neurotrophic  factor  involved  in  neuronal  prolifera*on,  survival,   synap*c  plas*city,  learning  and  memory.   • BDNF  is  increased  in  cortex  during  motor     learning   • In  this  study,  BDNF  was  blocked  aXer  a     focal  ischaemia.  Received  rehab.   • BDNF  likely  has  a  role  in  motor  map    reorganisa*on,  learning,  and     memory  aXer  stroke.     • Applica*ons  of  Neuroplas*city   Example  3  –  Hemispherectomy   In  some  cases  of  severe     epilepsy,  one  hemisphere  of   the  brain  may  be  removed   or  disconnected.     • Extensive  reorganisa*on  may   occur,  such  that  the     remaining  side  is   responsible  for    motor    and  sensory  func*on  for     both  sides  of  the  body.     • Greatest  poten*al  is  seen     for  children  under  age  of  6.     • Applica*ons  of  Neuroplas*city   Example  4     Blinded  subject   Sighted  subject   Applica*ons  of  Neuroplas*city   Maladap4ve/Adverse  Examples   • Chronic  pain  following  limb  amputa*on  (phantom  limb)   – 80%  of  amputees  report  painful  feelings  from  areas  where  limbs  are   no  longer  present   – Previous  theory  was  that  nerve  endings   were  inflamed,  causing  pain  (disproved).   – In  1990s,  Vilayanur  Ramachandran     hypothesised  that  phantom  limbs  was  due  to   reorganisa*on  of  the  somatosensory  cortex.     • Stroking  face  resulted  in  percep*ons  of  phantom   limb  being  touched   – Other  theories  also  exist.  No  consensus.     cnx.org   Applica*ons  of  Neuroplas*city   Maladap4ve/Adverse  Examples   • Onset  of  epilepsy  aXer  cerebral  trauma   – Arises  months  or  years  aXer  insult   – Delayed  onset  suggests  progressive  changes  in  the  brain   • Axonal  sprou*ng  and  new  connec*ons  that  alter  signalling  and   induce  seizures   • Drug  Addic*on   – Transi*on  from  casual  -­‐>  compulsive  -­‐>  relapse  is     thought  to  be  caused  by  long-­‐las*ng    neuroadapata*ons  in  reward   pathways     – Reward  circuits  are  involuntary  ac*vated  and  execu*ve  func*on   circuits  are  hijacked  to  support  drug-­‐seeking  behavior.       Therapies  to  Promote  Neuroplas*city   • Brain  s*mula*on  (non-­‐invasive-­‐  or  invasive)   – Non-­‐invasive  –  transcranial  magne*c  s*mula*on  and   transcranial  direct  current  s*mula*on   – Invasive  –  deep  brain  s*mula*on   www.pyschscenehub.com       • Physical  training  and  exercise   www.medium.com • Cogni*ve  training   • Neuropharmalogical  interven*ons       Therapies  to  Promote  Neuroplas*city   Transcranial  Magne4c  S4mula4on     Nowak  et  al.  2009   TMS  is  used  to  ac4vate  lesion  side  and   suppress  inhibi4on  from  unaffected  side   Therapies  to  Promote  Neuroplas*city   Transcranial  Direct  Current  S4mula4on   www.neuromtl.com   Therapies  to  Promote  Neuroplas*city   Deep  Brain  S4mula4on   van  Hartevelt  et  al.  (2014)   Long-­‐term  DBS  can  affect   structural  and  func4onal   connec4vity   Therapies  to  Promote  Neuroplas*city   Physical  Training  and  Exercise   Sawaki  et  al.  (2008)   Constraint  therapy  for  upper  limb   has  been  associated  with  enlarged   motor  cortex  map   Therapies  to  Promote  Neuroplas*city   Neuropharmalogical  interven4ons     Asadollahi  et  al.  (2018)   Compared  with  placebo  groups,     pa4ents  on  citalopram  or  fluoxe4ne   had  significant  increases  in  Fugl-­‐Meyer   Motor  Scale   Future  Direc*ons  and  Clinical   Ques*ons   • Improved  means  to  assess  neuroplas*city  in  humans   • Op*mal  therapy  parameters  and  pa*ent  popula*on   • Biomarkers  for  predic*ng  and  monitoring  response  to   treatment     • Combina*on  therapies   – E.g.  Brain  s*mula*on  with  peripheral  nerve  s*mula*on   (neurons  that  fire  together,  wire  together)   – E.g.  physical  training  +  stem  cell  therapy   • Comprehensive  understanding  of  all  levels  of  plas*city   and  bener  animal  disease  models   • Bener  understanding  of  how  age  and  cri*cal  periods   influence  circuit  development   Neuroplas8city   Can  be  facilitated  in     disease  via  therapy   • TMS   • TDCS   • Exercise   • Pharmalogically   Occurs  within  and     between  neurons   Has  wide-­‐scale   applica8ons  in     disease  and  healthy     states   Depends  on   -­‐  Age  (youth)   -­‐  Environment   -­‐  Ac8vity     Will  occur  differently   for  each  individual   -­‐  Speed   -­‐  Possibili8es  of  change     Is  always  occurring   www.quantamagazine.org   Is  not  always  a     good  thing   Is  a  developing  field  

Use Quizgecko on...
Browser
Browser