Solve the vector problems in the image, including finding norms/magnitudes, vector addition/subtraction, scalar multiplication, and unit vectors.

Understand the Problem
The image contains several math problems related to vectors. These include finding the norm (or magnitude) of vectors, performing vector addition and subtraction, scaling vectors, finding unit vectors in specified directions, and working with vectors in component form (i and j).
Answer
1. a. $|u| = \sqrt{2}$ b. $|v| = \sqrt{5}$ c. $|u| = 5$ d. $|v| = \frac{\sqrt{37}}{4}$ e. $|u| = \frac{\sqrt{62}}{10}$ 2. a. $|u + v| = 2\sqrt{29}$ b. $|u - v| = 2\sqrt{13}$ c. $r(u + 2v) = 17ri + 3rj$ d. $|\frac{1}{4}u - v| = \frac{\sqrt{706}}{4}$ 3. $(\frac{\sqrt{5}}{5}, \frac{2\sqrt{5}}{5})$ 4. $(-\frac{\sqrt{10}}{10}, -\frac{3\sqrt{10}}{10})$ 5. $(\frac{a}{\sqrt{a^2 + b^2}}, \frac{b}{\sqrt{a^2 + b^2}})$ and $(-\frac{a}{\sqrt{a^2 + b^2}}, -\frac{b}{\sqrt{a^2 + b^2}})$
Answer for screen readers
a. $|u| = \sqrt{2}$ b. $|v| = \sqrt{5}$ c. $|u| = 5$ d. $|v| = \frac{\sqrt{37}}{4}$ e. $|u| = \frac{\sqrt{62}}{10}$
a. $|u + v| = 2\sqrt{29}$ b. $|u - v| = 2\sqrt{13}$ c. $r(u + 2v) = 17ri + 3rj$ d. $|\frac{1}{4}u - v| = \frac{\sqrt{706}}{4}$
-
$(\frac{\sqrt{5}}{5}, \frac{2\sqrt{5}}{5})$
-
$(-\frac{\sqrt{10}}{10}, -\frac{3\sqrt{10}}{10})$
-
$(\frac{a}{\sqrt{a^2 + b^2}}, \frac{b}{\sqrt{a^2 + b^2}})$ and $(-\frac{a}{\sqrt{a^2 + b^2}}, -\frac{b}{\sqrt{a^2 + b^2}})$
Steps to Solve
- Find the norm of vector $u = (1, 1)$
To find the norm (magnitude) of a vector $(x, y)$, we use the formula $\sqrt{x^2 + y^2}$. For $u = (1, 1)$, the norm is $|u| = \sqrt{1^2 + 1^2} = \sqrt{1 + 1} = \sqrt{2}$.
- Find the norm of vector $v = (-2, 1)$
Using the same formula, for $v = (-2, 1)$, the norm is $|v| = \sqrt{(-2)^2 + 1^2} = \sqrt{4 + 1} = \sqrt{5}$.
- Find the norm of vector $u = (5, 0)$
For $u = (5, 0)$, the norm is $|u| = \sqrt{5^2 + 0^2} = \sqrt{25 + 0} = \sqrt{25} = 5$.
- Find the norm of vector $v = (\frac{1}{4}, \frac{3}{2})$
For $v = (\frac{1}{4}, \frac{3}{2})$, the norm is $|v| = \sqrt{(\frac{1}{4})^2 + (\frac{3}{2})^2} = \sqrt{\frac{1}{16} + \frac{9}{4}} = \sqrt{\frac{1}{16} + \frac{36}{16}} = \sqrt{\frac{37}{16}} = \frac{\sqrt{37}}{4}$.
- Find the norm of vector $u = (\frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{5})$
For $u = (\frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{5})$, the norm is $|u| = \sqrt{(\frac{\sqrt{2}}{2})^2 + (\frac{\sqrt{3}}{5})^2} = \sqrt{\frac{2}{4} + \frac{3}{25}} = \sqrt{\frac{1}{2} + \frac{3}{25}} = \sqrt{\frac{25}{50} + \frac{6}{50}} = \sqrt{\frac{31}{50}} = \frac{\sqrt{31}}{5\sqrt{2}} = \frac{\sqrt{62}}{10}$.
- Find $|u + v|$ when $u = 3i + 5j$ and $v = 7i - j$
First, find $u + v = (3i + 5j) + (7i - j) = (3+7)i + (5-1)j = 10i + 4j$. Then, find the norm: $|u + v| = \sqrt{10^2 + 4^2} = \sqrt{100 + 16} = \sqrt{116} = 2\sqrt{29}$.
- Find $|u - v|$ when $u = 3i + 5j$ and $v = 7i - j$
First, find $u - v = (3i + 5j) - (7i - j) = (3-7)i + (5-(-1))j = -4i + 6j$. Then, find the norm: $|u - v| = \sqrt{(-4)^2 + 6^2} = \sqrt{16 + 36} = \sqrt{52} = 2\sqrt{13}$.
- Find $r(u + 2v)$ when $u = 3i + 5j$, $v = 7i - j$, and $r \in R$
First, find $u + 2v = (3i + 5j) + 2(7i - j) = (3i + 5j) + (14i - 2j) = (3+14)i + (5-2)j = 17i + 3j$. Then, multiply by $r$: $r(u + 2v) = r(17i + 3j) = 17ri + 3rj$.
- Find $|\frac{1}{4}u - v|$ when $u = 3i + 5j$ and $v = 7i - j$
First, find $\frac{1}{4}u = \frac{1}{4}(3i + 5j) = \frac{3}{4}i + \frac{5}{4}j$. Then, find $\frac{1}{4}u - v = (\frac{3}{4}i + \frac{5}{4}j) - (7i - j) = (\frac{3}{4} - 7)i + (\frac{5}{4} - (-1))j = (\frac{3}{4} - \frac{28}{4})i + (\frac{5}{4} + \frac{4}{4})j = -\frac{25}{4}i + \frac{9}{4}j$. Finally, find the norm: $|\frac{1}{4}u - v| = \sqrt{(-\frac{25}{4})^2 + (\frac{9}{4})^2} = \sqrt{\frac{625}{16} + \frac{81}{16}} = \sqrt{\frac{706}{16}} = \frac{\sqrt{706}}{4}$.
- Find a unit vector in the direction of the vector (3, 6)
First, find the magnitude of the vector (3, 6): $\sqrt{3^2 + 6^2} = \sqrt{9 + 36} = \sqrt{45} = 3\sqrt{5}$. Then, divide the vector by its magnitude to find the unit vector: $(\frac{3}{3\sqrt{5}}, \frac{6}{3\sqrt{5}}) = (\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}) = (\frac{\sqrt{5}}{5}, \frac{2\sqrt{5}}{5})$.
- Find a unit vector in the direction opposite to the vector (1, 3)
First, find the magnitude of the vector (1, 3): $\sqrt{1^2 + 3^2} = \sqrt{1 + 9} = \sqrt{10}$. The unit vector in the direction of (1, 3) is $(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}})$. The unit vector in the opposite direction is $(-\frac{1}{\sqrt{10}}, -\frac{3}{\sqrt{10}}) = (-\frac{\sqrt{10}}{10}, -\frac{3\sqrt{10}}{10})$.
- Find two unit vectors, one in the same direction and the other opposite to the vector $u = (a, b) \neq 0$
First, find the magnitude of the vector $u = (a, b)$: $|u| = \sqrt{a^2 + b^2}$. The unit vector in the same direction is $(\frac{a}{\sqrt{a^2 + b^2}}, \frac{b}{\sqrt{a^2 + b^2}})$. The unit vector in the opposite direction is $(-\frac{a}{\sqrt{a^2 + b^2}}, -\frac{b}{\sqrt{a^2 + b^2}})$.
a. $|u| = \sqrt{2}$ b. $|v| = \sqrt{5}$ c. $|u| = 5$ d. $|v| = \frac{\sqrt{37}}{4}$ e. $|u| = \frac{\sqrt{62}}{10}$
a. $|u + v| = 2\sqrt{29}$ b. $|u - v| = 2\sqrt{13}$ c. $r(u + 2v) = 17ri + 3rj$ d. $|\frac{1}{4}u - v| = \frac{\sqrt{706}}{4}$
-
$(\frac{\sqrt{5}}{5}, \frac{2\sqrt{5}}{5})$
-
$(-\frac{\sqrt{10}}{10}, -\frac{3\sqrt{10}}{10})$
-
$(\frac{a}{\sqrt{a^2 + b^2}}, \frac{b}{\sqrt{a^2 + b^2}})$ and $(-\frac{a}{\sqrt{a^2 + b^2}}, -\frac{b}{\sqrt{a^2 + b^2}})$
More Information
The norm of a vector represents its length or magnitude. A unit vector is a vector with a magnitude of 1. To find a unit vector in the same direction as a given vector, you divide the vector by its magnitude. To find a unit vector in the opposite direction, you simply negate the unit vector in the same direction.
Tips
A common mistake is forgetting to square both components of the vector when calculating the norm (magnitude). Another mistake is not simplifying radicals completely. When finding unit vectors, it's important to divide each component of the vector by its magnitude. Fractions can also be a place where mistakes can occur; make sure to carefully add and subtract fractions.
AI-generated content may contain errors. Please verify critical information