Solve the following problems: 1. Find the measure of the angle between each pair of vectors: a. u=3i+2j and v=5i-j b. u = i + 7j and v=-i+j c. u=6i+j and v = i +8j 2. A convey... Solve the following problems: 1. Find the measure of the angle between each pair of vectors: a. u=3i+2j and v=5i-j b. u = i + 7j and v=-i+j c. u=6i+j and v = i +8j 2. A conveyor belt generates a force F = 5i-3j + 3k that moves a suitcase from point P (1, 1, 1) to Point Q (9, 4, 7) along a straight line. Find the work done by the conveyor belt. The distance is measured in meters and the force is measured in newtons. 3. If u and v are vectors represented as 2i + 3j + 4k and i + 2j + 3k, then find the area of the parallelogram spanned between them. 4. Find the area of the triangle whose vertices are A (3, -1, 2), B (1, -1, -3) and C(4,-3, 1).

Understand the Problem
The image contains several math questions related to vectors and forces. These problems require knowledge of vector algebra, dot products, cross products, and the concept of work done by a force. We will need to solve for angles between vectors, work done by a force along a straight line, and finding the area of parallelograms and triangles defined by vectors.
Answer
a. $45^{\circ}$ b. $\approx 53.13^{\circ}$ c. $\approx 73.41^{\circ}$ 49 Joules $\sqrt{6}$ $\frac{\sqrt{165}}{2}$
Answer for screen readers
a. The angle between vectors $\vec{u}=3\vec{i}+2\vec{j}$ and $\vec{v}=5\vec{i}-\vec{j}$ is $45^{\circ}$. b. The angle between vectors $\vec{u}=\vec{i}+7\vec{j}$ and $\vec{v}=-\vec{i}+\vec{j}$ is approximately $53.13^{\circ}$. c. The angle between vectors $\vec{u}=6\vec{i}+\vec{j}$ and $\vec{v}=\vec{i}+8\vec{j}$ is approximately $73.41^{\circ}$. The work done by the conveyor belt is 49 Joules. The area of the parallelogram spanned by vectors $\vec{u}=2\vec{i}+3\vec{j}+4\vec{k}$ and $\vec{v}=\vec{i}+2\vec{j}+3\vec{k}$ is $\sqrt{6}$ square units. The area of the triangle with vertices A(3, -1, 2), B(1, -1, -3), and C(4, -3, 1) is $\frac{\sqrt{165}}{2}$ square units.
Steps to Solve
- Find the angle between vectors $\vec{u}=3\vec{i}+2\vec{j}$ and $\vec{v}=5\vec{i}-\vec{j}$
The dot product of two vectors is related to the angle between them by the formula: $\vec{u} \cdot \vec{v} = ||\vec{u}|| \cdot ||\vec{v}|| \cdot \cos{\theta}$. First, find the dot product $\vec{u} \cdot \vec{v}$: $$ \vec{u} \cdot \vec{v} = (3)(5) + (2)(-1) = 15 - 2 = 13 $$ Next, find the magnitudes of $\vec{u}$ and $\vec{v}$: $$ ||\vec{u}|| = \sqrt{3^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13} $$ $$ ||\vec{v}|| = \sqrt{5^2 + (-1)^2} = \sqrt{25 + 1} = \sqrt{26} $$ Now, find the cosine of the angle between the vectors: $$ \cos{\theta} = \frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| \cdot ||\vec{v}||} = \frac{13}{\sqrt{13} \cdot \sqrt{26}} = \frac{13}{\sqrt{13} \cdot \sqrt{2} \cdot \sqrt{13}} = \frac{13}{13\sqrt{2}} = \frac{1}{\sqrt{2}} $$ Therefore, $\theta = \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) = 45^{\circ}$
-
Find the angle between vectors $\vec{u}=\vec{i}+7\vec{j}$ and $\vec{v}=-\vec{i}+\vec{j}$ Find the dot product $\vec{u} \cdot \vec{v}$: $$ \vec{u} \cdot \vec{v} = (1)(-1) + (7)(1) = -1 + 7 = 6 $$ Next, find the magnitudes of $\vec{u}$ and $\vec{v}$: $$ ||\vec{u}|| = \sqrt{1^2 + 7^2} = \sqrt{1 + 49} = \sqrt{50} $$ $$ ||\vec{v}|| = \sqrt{(-1)^2 + 1^2} = \sqrt{1 + 1} = \sqrt{2} $$ Now, find the cosine of the angle between the vectors: $$ \cos{\theta} = \frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| \cdot ||\vec{v}||} = \frac{6}{\sqrt{50} \cdot \sqrt{2}} = \frac{6}{\sqrt{100}} = \frac{6}{10} = \frac{3}{5} $$ Therefore, $\theta = \cos^{-1}\left(\frac{3}{5}\right) \approx 53.13^{\circ}$
-
Find the angle between vectors $\vec{u}=6\vec{i}+\vec{j}$ and $\vec{v}=\vec{i}+8\vec{j}$ Find the dot product $\vec{u} \cdot \vec{v}$: $$ \vec{u} \cdot \vec{v} = (6)(1) + (1)(8) = 6 + 8 = 14 $$ Next, find the magnitudes of $\vec{u}$ and $\vec{v}$: $$ ||\vec{u}|| = \sqrt{6^2 + 1^2} = \sqrt{36 + 1} = \sqrt{37} $$ $$ ||\vec{v}|| = \sqrt{1^2 + 8^2} = \sqrt{1 + 64} = \sqrt{65} $$ Now, find the cosine of the angle between the vectors: $$ \cos{\theta} = \frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| \cdot ||\vec{v}||} = \frac{14}{\sqrt{37} \cdot \sqrt{65}} = \frac{14}{\sqrt{2405}} \approx \frac{14}{49.04} \approx 0.2855 $$ Therefore, $\theta = \cos^{-1}\left(\frac{14}{\sqrt{2405}}\right) \approx 73.41^{\circ}$
-
Find the work done by the conveyor belt The work done by a force along a straight line is given by $W = \vec{F} \cdot \vec{d}$, where $\vec{F}$ is the force and $\vec{d}$ is the displacement vector. First, find the displacement vector $\vec{d}$ from point P(1, 1, 1) to point Q(9, 4, 7): $$ \vec{d} = (9-1)\vec{i} + (4-1)\vec{j} + (7-1)\vec{k} = 8\vec{i} + 3\vec{j} + 6\vec{k} $$ Now, find the work done: $$ W = \vec{F} \cdot \vec{d} = (5\vec{i} - 3\vec{j} + 3\vec{k}) \cdot (8\vec{i} + 3\vec{j} + 6\vec{k}) = (5)(8) + (-3)(3) + (3)(6) = 40 - 9 + 18 = 49 $$ So, the work done is 49 Joules.
-
Find the area of the parallelogram spanned by vectors $\vec{u}=2\vec{i}+3\vec{j}+4\vec{k}$ and $\vec{v}=\vec{i}+2\vec{j}+3\vec{k}$ The area of the parallelogram is given by the magnitude of the cross product of the two vectors: $A = ||\vec{u} \times \vec{v}||$. First, find the cross product $\vec{u} \times \vec{v}$: $$ \vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \ 2 & 3 & 4 \ 1 & 2 & 3 \end{vmatrix} = (3\cdot3 - 4\cdot2)\vec{i} - (2\cdot3 - 4\cdot1)\vec{j} + (2\cdot2 - 3\cdot1)\vec{k} = (9-8)\vec{i} - (6-4)\vec{j} + (4-3)\vec{k} = \vec{i} - 2\vec{j} + \vec{k} $$ Now, find the magnitude of the cross product: $$ ||\vec{u} \times \vec{v}|| = \sqrt{1^2 + (-2)^2 + 1^2} = \sqrt{1 + 4 + 1} = \sqrt{6} $$ So, the area of the parallelogram is $\sqrt{6}$ square units.
-
Find the area of the triangle with vertices A(3, -1, 2), B(1, -1, -3), and C(4, -3, 1)
The area of the triangle formed by three points A, B, and C is given by half the magnitude of the cross product of the vectors $\vec{AB}$ and $\vec{AC}$: $A = \frac{1}{2}||\vec{AB} \times \vec{AC}||$. First, find the vectors $\vec{AB}$ and $\vec{AC}$: $$ \vec{AB} = (1-3)\vec{i} + (-1-(-1))\vec{j} + (-3-2)\vec{k} = -2\vec{i} + 0\vec{j} - 5\vec{k} $$ $$ \vec{AC} = (4-3)\vec{i} + (-3-(-1))\vec{j} + (1-2)\vec{k} = \vec{i} - 2\vec{j} - \vec{k} $$ Now, find the cross product $\vec{AB} \times \vec{AC}$: $$ \vec{AB} \times \vec{AC} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \ -2 & 0 & -5 \ 1 & -2 & -1 \end{vmatrix} = (0\cdot(-1) - (-5)\cdot(-2))\vec{i} - ((-2)\cdot(-1) - (-5)\cdot1)\vec{j} + ((-2)\cdot(-2) - 0\cdot1)\vec{k} = (0-10)\vec{i} - (2+5)\vec{j} + (4-0)\vec{k} = -10\vec{i} - 7\vec{j} + 4\vec{k} $$ Find the magnitude of the cross product: $$ ||\vec{AB} \times \vec{AC}|| = \sqrt{(-10)^2 + (-7)^2 + 4^2} = \sqrt{100 + 49 + 16} = \sqrt{165} $$ Finally, find the area of the triangle: $$ A = \frac{1}{2}||\vec{AB} \times \vec{AC}|| = \frac{1}{2}\sqrt{165} $$ So, the area of the triangle is $\frac{\sqrt{165}}{2}$ square units.
a. The angle between vectors $\vec{u}=3\vec{i}+2\vec{j}$ and $\vec{v}=5\vec{i}-\vec{j}$ is $45^{\circ}$. b. The angle between vectors $\vec{u}=\vec{i}+7\vec{j}$ and $\vec{v}=-\vec{i}+\vec{j}$ is approximately $53.13^{\circ}$. c. The angle between vectors $\vec{u}=6\vec{i}+\vec{j}$ and $\vec{v}=\vec{i}+8\vec{j}$ is approximately $73.41^{\circ}$. The work done by the conveyor belt is 49 Joules. The area of the parallelogram spanned by vectors $\vec{u}=2\vec{i}+3\vec{j}+4\vec{k}$ and $\vec{v}=\vec{i}+2\vec{j}+3\vec{k}$ is $\sqrt{6}$ square units. The area of the triangle with vertices A(3, -1, 2), B(1, -1, -3), and C(4, -3, 1) is $\frac{\sqrt{165}}{2}$ square units.
More Information
The angle between two vectors can range from 0 to 180 degrees. Work done can be positive, negative or zero depending on the angle between force and displacement. The cross product gives a vector perpendicular to the plane formed by the original two vectors. Its magnitude gives the area of the parallelogram spanned by the vectors. The area of a parallelogram is given by $||\vec{u} \times \vec{v}||$. The area of a triangle is given by $\frac{1}{2}||\vec{AB} \times \vec{AC}||$.
Tips
- Forgetting to take the inverse cosine to find the angle between two vectors
- Incorrectly computing the dot product or cross product of two vectors.
- Not taking the magnitude after cross product when calculating area of parallelogram/triangle
- Forgetting to divide by 2 when finding the area of a triangle using cross product.
AI-generated content may contain errors. Please verify critical information