Solve the differential equation: $(1+y^2)dx = (\tan^{-1}y - x)dy$

Understand the Problem
The question requires solving the given differential equation. The equation involves terms with $x$, $y$, $\frac{dx}{dy}$, and $\tan^{-1}(y)$.
Answer
$x = \tan^{-1}y - 1 + Ce^{-\tan^{-1}y}$
Answer for screen readers
$x = \tan^{-1}y - 1 + Ce^{-\tan^{-1}y}$
Steps to Solve
- Rewrite the given differential equation
The given differential equation is $(1+y^2)dx = (\tan^{-1}y - x)dy$. We rewrite it to the form $\frac{dx}{dy} = \frac{\tan^{-1}y - x}{1+y^2}$.
- Separate the terms
Separate $\frac{dx}{dy}$ to get $\frac{dx}{dy} = \frac{\tan^{-1}y}{1+y^2} - \frac{x}{1+y^2}$.
- Rearrange the equation into a linear first-order form
Rearrange the terms so that it looks like a linear first-order differential equation $\frac{dx}{dy} + P(y)x = Q(y)$. Thus, $\frac{dx}{dy} + \frac{1}{1+y^2}x = \frac{\tan^{-1}y}{1+y^2}$.
- Find the integrating factor
The integrating factor is given by $e^{\int P(y)dy}$. In our equation, $P(y) = \frac{1}{1+y^2}$. Then, $\int P(y)dy = \int \frac{1}{1+y^2}dy = \tan^{-1}y$. Hence, the integrating factor is $e^{\tan^{-1}y}$.
- Multiply the entire equation by the integrating factor
Multiply the equation $\frac{dx}{dy} + \frac{1}{1+y^2}x = \frac{\tan^{-1}y}{1+y^2}$ by $e^{\tan^{-1}y}$. We have: $e^{\tan^{-1}y}\frac{dx}{dy} + e^{\tan^{-1}y}\frac{1}{1+y^2}x = e^{\tan^{-1}y}\frac{\tan^{-1}y}{1+y^2}$.
- Recognize the left side as the derivative of a product
The left side is the derivative of $x \cdot e^{\tan^{-1}y}$ with respect to $y$. Thus we have $\frac{d}{dy}(x e^{\tan^{-1}y}) = e^{\tan^{-1}y}\frac{\tan^{-1}y}{1+y^2}$.
- Integrate both sides with respect to y
Integrate both sides with respect to $y$: $\int \frac{d}{dy}(x e^{\tan^{-1}y}) dy = \int e^{\tan^{-1}y}\frac{\tan^{-1}y}{1+y^2} dy$. So, $x e^{\tan^{-1}y} = \int e^{\tan^{-1}y}\frac{\tan^{-1}y}{1+y^2} dy$.
- Solve the integral
Let $u = \tan^{-1}y$, then $du = \frac{1}{1+y^2}dy$. The integral becomes $\int ue^u du$. Using integration by parts: $\int ue^u du = u\int e^u du - \int (\frac{du}{du}\int e^u du) du = ue^u - \int e^u du = ue^u - e^u + C$. Substituting back $u = \tan^{-1}y$, we have $\int e^{\tan^{-1}y}\frac{\tan^{-1}y}{1+y^2} dy = (\tan^{-1}y)e^{\tan^{-1}y} - e^{\tan^{-1}y} + C$.
- Substitute back into the solution
Now we have $x e^{\tan^{-1}y} = (\tan^{-1}y)e^{\tan^{-1}y} - e^{\tan^{-1}y} + C$.
- Solve for x
Divide by $e^{\tan^{-1}y}$: $x = \tan^{-1}y - 1 + Ce^{-\tan^{-1}y}$.
$x = \tan^{-1}y - 1 + Ce^{-\tan^{-1}y}$
More Information
The solution represents a family of curves that satisfy the original differential equation. The constant $C$ can be determined if an initial condition is given.
Tips
A common mistake is not recognizing the integrating factor correctly or making an error in the integration by parts. Also, forgetting the constant of integration $C$ is a frequent error.
AI-generated content may contain errors. Please verify critical information