Soit ABC un triangle. 1) Construire le point I tel que $\vec{AI} = 2\vec{AB}$. 2) Construire le point J tel que $\vec{AJ} = 2\vec{AC}$. 3) Montrer que : $\vec{IJ} = 2\vec{BC}$

Question image

Understand the Problem

La question porte sur la géométrie vectorielle dans un triangle. Elle demande de construire des points I et J en fonction des vecteurs donnés, puis de prouver une relation vectorielle entre les points I, J, B et C. Il s'agit d'un problème typique de mathématiques de niveau lycée.

Answer

$\vec{IJ} = 2\vec{BC}$
Answer for screen readers

$\vec{IJ} = 2\vec{BC}$

Steps to Solve

  1. Understanding the Construction of point I

The problem states that $\vec{AI} = 2\vec{AB}$. This means the vector $\vec{AI}$ is twice the vector $\vec{AB}$ in the same direction. To construct point I, extend the line segment AB past B to a point I such that the length AI is twice the length of AB.

  1. Understanding the Construction of point J

Similarly, $\vec{AJ} = 2\vec{AC}$. This means the vector $\vec{AJ}$ is twice the vector $\vec{AC}$ in the same direction. Extend the line segment AC past C to a point J such that the length AJ is twice the length of AC.

  1. Express $\vec{IJ}$ in terms of $\vec{AJ}$ and $\vec{AI}$

We can write $\vec{IJ}$ as $\vec{AJ} - \vec{AI}$ using the Chasles' relation.

  1. Substitute the given relations

We know that $\vec{AI} = 2\vec{AB}$ and $\vec{AJ} = 2\vec{AC}$. So, we substitute these into the expression for $\vec{IJ}$:

$$ \vec{IJ} = 2\vec{AC} - 2\vec{AB} $$

  1. Factor out the constant

Factor out 2 from the above expression:

$$ \vec{IJ} = 2(\vec{AC} - \vec{AB}) $$

  1. Express $\vec{BC}$ in terms of $\vec{AC}$ and $\vec{AB}$

Using Chasles' relation, we can write $\vec{BC}$ as $\vec{AC} - \vec{AB}$.

  1. Substitute to find the final relation

Substitute $\vec{BC} = \vec{AC} - \vec{AB}$ into the equation for $\vec{IJ}$:

$$ \vec{IJ} = 2\vec{BC} $$

$\vec{IJ} = 2\vec{BC}$

More Information

The result shows that vector $\vec{IJ}$ is twice the vector $\vec{BC}$ meaning they're parallel and the magnitude of $\vec{IJ}$ is twice that of $\vec{BC}$.

Tips

  • Incorrectly applying the Chasles' relation.
  • Forgetting to factor out the constant 2.
  • Getting the direction of the vectors wrong when applying Chasles' relation (e.g., writing $\vec{BC} = \vec{AB} - \vec{AC}$ instead of $\vec{BC} = \vec{AC} - \vec{AB}$).

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser