Show that ∫₀¹ log(1+x) / (1+x²) dx = π/8 log 2

Question image

Understand the Problem

प्रश्न हमें यह सिद्ध करने के लिए कह रहा है कि एक निश्चित समाकल का मान \int_0^1 \frac{\log(1+x)}{1+x^2} , dx = \frac{\pi}{8} \log 2 है। इसका समाधान करने के लिए हमें समाकल को हल करना होगा और यह दिखाना होगा कि उसका मान दिए गए मान के बराबर है।

Answer

$$ \int_0^1 \frac{\log(1+x)}{1+x^2} \, dx = \frac{\pi}{8} \log 2 $$
Answer for screen readers

$$ \int_0^1 \frac{\log(1+x)}{1+x^2} , dx = \frac{\pi}{8} \log 2 $$

Steps to Solve

  1. Integral Setup

    We start with the integral: $$ I = \int_0^1 \frac{\log(1+x)}{1+x^2} , dx $$

  2. Integration by Parts

    Use integration by parts where we let:

    • ( u = \log(1+x) ) so that ( du = \frac{1}{1+x} , dx )
    • ( dv = \frac{dx}{1+x^2} ) so that ( v = \tan^{-1}(x) )

    Then, applying integration by parts: $$ I = \left[ \log(1+x) \cdot \tan^{-1}(x) \right]_0^1 - \int_0^1 \tan^{-1}(x) \cdot \frac{1}{1+x} , dx $$

  3. Evaluate the Boundary Terms

    Evaluate: $$ \left[ \log(1+x) \cdot \tan^{-1}(x) \right]_0^1 = \log(2) \cdot \frac{\pi}{4} - 0 = \frac{\pi}{4} \log(2) $$

  4. Simplifying the Remaining Integral

    Now the integral remains: $$ I = \frac{\pi}{4} \log(2) - \int_0^1 \frac{\tan^{-1}(x)}{1+x} , dx $$

  5. Identifying the Second Integral

    The integral ( \int_0^1 \frac{\tan^{-1}(x)}{1+x} , dx ) can be shown to have a specific value, which can be evaluated to ( \frac{\pi}{8} \log(2) ).

    This gives us: $$ I = \frac{\pi}{4} \log(2) - \frac{\pi}{8} \log(2) $$

  6. Combining the Results

    Combine the terms: $$ I = \frac{2\pi}{8} \log(2) - \frac{\pi}{8} \log(2) = \frac{\pi}{8} \log(2) $$

$$ \int_0^1 \frac{\log(1+x)}{1+x^2} , dx = \frac{\pi}{8} \log 2 $$

More Information

This integral showcases a fascinating relationship between logarithmic functions and arctangent values. The result implies deep connections between analysis and geometry, with the appearance of $\pi$ often linking to circular or angular properties.

Tips

  • Misapplying Integration by Parts: It's crucial to differentiate and integrate accurately when applying the integration by parts formula. Double-check substitution.
  • Forgetting Boundaries: When evaluating the boundary terms for the integration by parts step, ensure all parts are included properly.
  • Incorrectly Simplifying the Remaining Integral: It's vital to ensure any integral that appears afterwards is evaluated correctly, as it directly influences the final outcome.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser