Sea la señal x[n] = 5 + sen(1/4πn) + cos(4πn+1/9π). Determine los coeficientes para la serie de Fourier a_k de los siguientes valores de k.

Question image

Understand the Problem

La pregunta trata sobre el cálculo de los coeficientes de Fourier de una señal periódica discreta. Dado una señal x[n] que es una suma de una constante, una función seno y una función coseno, el objetivo es determinar los coeficientes a_k de la serie de Fourier para diferentes valores de k. Esto implica identificar las componentes de frecuencia presentes en la señal y calcular sus amplitudes correspondientes.

Answer

$a_0 = 5$, $a_1 = -\frac{j}{2}$, $a_{-1} = \frac{j}{2}$, $a_{16} = \frac{e^{j\frac{1}{9}\pi}}{2}$, $a_{-16} = \frac{e^{-j\frac{1}{9}\pi}}{2}$
Answer for screen readers

$a_0 = 5$ $a_1 = -\frac{j}{2}$ $a_{-1} = \frac{j}{2}$ $a_{16} = \frac{e^{j\frac{1}{9}\pi}}{2}$ $a_{-16} = \frac{e^{-j\frac{1}{9}\pi}}{2}$

Steps to Solve

  1. Identify the components of the signal

The signal $x[n]$ is given by: $x[n] = 5 + \sin(\frac{1}{4}\pi n) + \cos(4\pi n + \frac{1}{9}\pi)$ This signal consists of three components: a DC component (5), a sine wave, and a cosine wave.

  1. Express sine and cosine in complex exponentials

We can use Euler's formula to express the sine and cosine functions as complex exponentials:

$\sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j}$ $\cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2}$

Thus:

$\sin(\frac{1}{4}\pi n) = \frac{e^{j\frac{1}{4}\pi n} - e^{-j\frac{1}{4}\pi n}}{2j}$ $\cos(4\pi n + \frac{1}{9}\pi) = \frac{e^{j(4\pi n + \frac{1}{9}\pi)} + e^{-j(4\pi n + \frac{1}{9}\pi)}}{2}$

  1. Rewrite the signal x[n] using complex exponentials

Substitute the complex exponential forms into the expression for $x[n]$:

$x[n] = 5 + \frac{e^{j\frac{1}{4}\pi n} - e^{-j\frac{1}{4}\pi n}}{2j} + \frac{e^{j(4\pi n + \frac{1}{9}\pi)} + e^{-j(4\pi n + \frac{1}{9}\pi)}}{2}$

  1. Identify the Fourier series coefficients

The general form of the Fourier series is: $x[n] = \sum_{k} a_k e^{j \frac{2\pi}{N}kn}$

Comparing this with our expression for $x[n]$, we want to identify the coefficients $a_k$ for different values of $k$.

For the DC component, $5 = a_0 e^{j0n}$, so $a_0 = 5$. Actually here we consider $N=1$.

For the sine component $\sin(\frac{1}{4}\pi n) = \frac{e^{j\frac{1}{4}\pi n} - e^{-j\frac{1}{4}\pi n}}{2j}$: $\frac{1}{4}\pi = \frac{2\pi}{N}k$, with $N=8$, then $\frac{1}{4}\pi = \frac{2\pi}{8} k = \frac{1}{4}\pi k$ so $k=1$. Therefore $a_1 = \frac{1}{2j} = -\frac{j}{2}$. For $k=-1$, $a_{-1} = -\frac{1}{2j} = \frac{j}{2}$.

For the cosine component $\cos(4\pi n + \frac{1}{9}\pi) = \frac{e^{j(4\pi n + \frac{1}{9}\pi)} + e^{-j(4\pi n + \frac{1}{9}\pi)}}{2}$:

$4\pi = \frac{2\pi}{N}k$, with $N=1/2$ then $k=1$. Therefore $a_1 = \frac{e^{j\frac{1}{9}\pi}}{2}$ For $k=-1$, $a_{-1} = \frac{e^{-j\frac{1}{9}\pi}}{2}$

When $N = 1$, $x[n] = 5 + \frac{e^{j\frac{1}{4}\pi n} - e^{-j\frac{1}{4}\pi n}}{2j} + \frac{e^{j\frac{1}{9}\pi}e^{j4\pi n} + e^{-j\frac{1}{9}\pi}e^{-j4\pi n}}{2}$ The signal is discrete but not periodic

If we consider the signal is periodic in $N=8$, we can write: $x[n] = 5 + \frac{e^{j\frac{1}{4}\pi n} - e^{-j\frac{1}{4}\pi n}}{2j} + \frac{e^{j\frac{1}{9}\pi}e^{j\frac{2\pi}{8}16 n} + e^{-j\frac{1}{9}\pi}e^{-j\frac{2\pi}{8}16 n}}{2}$ so, $a_0 = 5$, $a_1 = \frac{1}{2j} = -\frac{j}{2}$, $a_{-1} = -\frac{1}{2j} = \frac{j}{2}$, $a_{16} = \frac{e^{j\frac{1}{9}\pi}}{2}$ y $a_{-16} = \frac{e^{-j\frac{1}{9}\pi}}{2}$

$a_0 = 5$ $a_1 = -\frac{j}{2}$ $a_{-1} = \frac{j}{2}$ $a_{16} = \frac{e^{j\frac{1}{9}\pi}}{2}$ $a_{-16} = \frac{e^{-j\frac{1}{9}\pi}}{2}$

More Information

The Fourier series decomposes a periodic signal into a sum of complex exponentials. The coefficients represent the weights of each exponential in the sum.

Tips

A common mistake is not correctly converting sine and cosine functions to complex exponentials using Euler's formula. Another mistake is not identifying the correct frequencies and corresponding 'k' values in the Fourier series representation. It's also easy to mess up the algebra when combining terms.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser